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Abstract 

Passenger Demand for Air Transportation in a Hub-and-Spoke Network 

by 

Chieh-Yu Hsiao 

Doctor of Philosophy in Engineering-Civil and Environmental Engineering 

University of California, Berkeley 

Professor Mark M. Hansen, Chair 

A major transformation of the air transportation system—involving the 

modernization of technologies, policies, and business models—is currently under way. 

Knowledge of passenger demand for air service is the key to a successful system 

transformation. This research develops an air passenger demand model and applies it to 

the air transportation system of the United States. 

The proposed model deals with city-pair demand generation and demand 

assignment (to routes) in a single model, which is consistent with random utility theory. It 

also quantifies the "induced" air travel by adding a non-air alternative in the choice set. 

Using publicly available and regularly collected panel data, the model captures both time 

series and cross-sectional variation of air travel demand, and can be regularly updated. 

The empirical analysis explicitly modeled the pattern of correlations among alternatives 

by a three-level nested logit model. This implies that a route is more likely to compete 

with another route of the same O-D airport pair in a multiple airport system than the 
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routes of the other O-D airport pairs, and is least likely to be substituted by the non-air 

alternative. In addition, the ehdogeneity problem of air fare was identified and remedied 

by the instrumental variables (IV) method. The IV estimates yield more sensible 

values-of-time, demand elasticities, and correlations of total utilities for alternatives than 

those of ordinary least squares method. 

Other empirical findings include that (1) the fare elasticities from our estimates 

accord with the variation of fare elasticities from other studies in the literature; (2) for 

connecting routes, a proportional flight frequency increase on the segment with lower 

frequency increases service attractiveness more than an equivalent change on higher 

frequency segment; (3) travelers avoid connecting at airports with high expected delay; 

(4) under steady state, a one-minute hub delay increase has a larger impact on demand 

than an equivalent change in scheduled flight time of a connecting route; (5) air travel 

demand is strongly sensitive to income; (6) market distance has a concave effect on air 

route demand; and (7) potential travelers' fare sensitivity has increased relative to 

frequency sensitivity since 2001. 

Professor Mark M. Hansen 

Dissertation Committee Chair 
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Chapter 1 Introduction 

A major transformation of the air transportation system—involving the 

modernization of technologies, policies, and business models—is currently under way. 

Knowledge of passenger demand for air service is the key to a successful system 

transformation. For instance, in the United States, the Next Generation Air Transportation 

System (NextGen)1 programs endeavor, in part, to expand capacity and accommodate 

future traffic growth. While overestimating future traffic leads to overinvestment, 

underestimating future traffic distorts system operations and causes poor system 

performance, thereby increasing user (e.g. airlines and travelers) costs. A better 

understanding of passenger demand will make the expansion more cost-beneficial. 

Current understanding of the demand for air service fails to address several 

significant questions: (1) What is the relative importance of causal factors (such as cost, 

flight frequency, directness of routing, on-time performance, and income) in determining 

demand and demand assignment among routes? (2) How have these relationships 

changed over time? (3) What is the appropriate structure for nesting the wide array of 

route alternatives, which encompass alternate terminal airports, routing types, connecting 

hubs, as well as the possibility of not traveling (by air) at all? 

1 According to Joint Planning and Development Office (2007), "the goal of NextGen is 
to significantly increase the safety, security, capacity, efficiency, and environmental 
compatibility of air transportation operations, and by doing so, to improve the overall 
economic well-being of the country." Refer to Joint Planning and Development Office 
(2004; 2007) for more information. 

2 Details are discussed in the section of literature review (section 2.1). 

1 
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Appropriately identifying causal factors and quantifying their effects contribute to 

the fundamental understanding of air travel demand and allow sensible predictions of 

demand response to a wide range of future scenarios, including different levels of 

congestion, network connectivity, aircraft size and frequency, and fuel price, among other 

factors. Existing models are not sufficient to meet these purposes for several reasons, as 

discussed below. 

Most existing models in the literature only deal with either demand generation or 

demand assignment, or treat these two phenomena sequentially. The sequential approach 

is inappropriate since it implicitly assumes that the total demand volume is independent 

of alternative cost and service quality. In addition, studies in air demand literature usually 

include cost and flight frequency as causal factors, other factors—such as on-time 

performance—are seldom investigated. Specifying these additional causal factors not 

only allows predictions of demand response to changes in these factors, but also affects 

the estimated effects of cost and flight frequency. More importantly, although most 

studies in air demand literature recognize the importance of fare in air demand, few of 

them deal with the endogeneity problem of fare, which may bias the estimated effects of 

all causal factors. 

Changes in the structure of air travel demand over time are of interest and seldom 

studied. Possible reasons for the structural include changing distribution channels and the 

entry of low-cost carriers. Rapid development of the Internet and its use to purchase air 

travel may affect the structure of airline service demand by increasing the availability of 

travel information and reducing the role of travel agents. Entry of low cost carriers may 

2 
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increase expectations for lower fares and the tendency of consumers to search for them. 

Examining trends in the structure of air travel demand can reveal whether and to what 

extent such changes have occurred, and thereby reveal the prospects for similar dynamics 

in the future. 

Air travelers and potential air travelers face a rich array of travel alternatives, from 

whether to travel, to what airports to fly between, to their routing, airline, flight, and 

service class. Some alternatives are very similar to each other while others are quite 

different. In the formulism of random utility theory upon which this research is based 

similarity between alternatives is captured by the correlations between their stochastic 

utilities: if an individual that is predisposed toward alternative A is also likely to be 

predisposed toward alternative B, we consider A and B to be correlated. We seek to 

understand the pattern of such correlation evidenced in the distribution of traffic among 

routes (including the "null route" of not traveling by air). Such patterns are of inherent 

interest, and must be properly represented in order to accurately estimate effects of causal 

factors, and are critical in predicting how demand will respond to changes in service 

supply. 

In sum, existing air travel demand models and literature have several shortcomings 

that this research seeks to address. In so doing we contribute to both fundamental 

understanding of air travel demand and the practical need to predict how demand will 

respond to a range of future scenarios. Specific objectives and an overview of the 

research are presented below. 

3 
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Methodological Objectives 

This research tries to build a city-pair air passenger demand model that can achieve 

following objectives: 

• The proposed model considers link flows in the US air transportation system. It 

predicts aggregate link flows from flows in particular city-pair markets. This 

bottom-up approach allows flow impacts of a wide range of system changes involving 

airports, fares, flight frequencies, and regional economic growth to be investigated. 

• Demand generation and demand assignment are treated in a single model. In addition, 

the "induced" air travel is quantified by the model; that is, total air demand is allowed 

to vary and potential travelers are not forced to choose one of the air alternatives. As a 

result, a change in a causal factor may influence both total air demand and market 

shares of alternatives. 

• Multiple routes and multiple airports within regions are modeled. Since multiple routes 

and multiple airports are used to travel in a city-pair market they need to be handled in 

the model. 

• The proposed model captures the pattern of correlations among alternatives. This is an 

essential feature of the structure of demand, and must be taken into account when 

predicting how airport or link changes will affect traffic. 

• Both time series and cross-sectional variation in air travel demand are modeled, so 

changes in the structure of air travel demand over time can be identified. 

4 
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Empirical Objectives 

Applying the proposed model to the air transportation system of the United States, 

this research intends to answer following empirical questions. 

• What is the structure of correlations for airline service alternatives? 

There are many possible structures of correlations. This research seeks a correlation 

structure that is computationally tractable and is consistent with utility-maximization. 

Possible structures are proposed by assuming that alternatives with common features— 

for example, type of routing, or terminal airport—have higher correlations. The relative 

importance of different common features in producing correlation, and the degree of 

correlation that results, are important empirical questions addressed in this research. 

• How is air service demand affected by causal factors? 

Effects of causal factors on air demand are carefully investigated and quantified. 

Different measurements and functional forms of these causal factors are considered and 

experimented. Demand elasticities with respect to causal factors are also calculated, and 

thereby the relative importance of causal factors is clearly revealed. 

• Has the structure of airline service demand changed over time? 

Structural changes over time are examined with the focus on fare and frequency. In 

addition to sensitivities to individual causal factors, the relative sensitivity to fare and 

frequency is traced. In particular, the hypothesis that fare sensitivity has increased and 

frequency sensitivity has (relatively) decreased is tested. 

5 
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Thesis Overview 

Subsequent chapters of this dissertation are organized as follows. In chapter 2, 

studies on demand generation and demand assignment for different aggregation levels are 

first reviewed. Limitations of these existing models suggest the need for a new model in 

order to better represent travel behavior and to test our hypotheses. Then, the demand 

model is developed. After the conceptual framework of the model is presented, two main 

components of the model, the saturated demand function and the market share function, 

are further discussed. 

Chapter 3 demonstrates the implementation of the proposed model and quantifies 

the effects of causal factors. Model specifications, including model forms, nesting 

structures, and causal factors, are justified in the beginning of the chapter. Information 

about data sources, data compilation, and summary statistics is then provided. After 

estimation related issues are reviewed, a preferred estimation method is determined. 

Estimation results are discussed at the end of the chapter. 

Implications and applications of the estimated models are shown in chapter 4. 

Based on the estimation results of chapter 3, demand elasticities with respect to different 

variables, such as fare and frequency, are calculated. These elasticities are compared with 

those in the literature, in order to judge the appropriateness of the estimated models. 

Policy experiments on fare and on-time performance are conducted to demonstrate 

applications of the model. They also show, through the substitution patterns of 

alternatives of different model forms, the importance of choosing an appropriate model 

form. Structural changes over time are investigated in the last section of chapter 4. 

6 
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Finally, chapter 5 concludes this research by summarizing the methodological 

contributions and empirical findings of the research. Moreover, recommendations for 

future work are discussed. 

7 
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Chapter 2 A Passenger Demand Model for Air Transportation 

A large number of air passenger demand models have been developed for diverse 

purposes. As different types of models have different advantages and limitations, in this 

chapter, relevant studies are reviewed first, from which we can identify the needs for a 

new model in order to better represent travel behavior and to achieve our objectives. 

Then, the demand model is developed and demonstrated. 

2.1 Literature Review 

2.1.1 Overview 

Relevant air transport demand models can be summarized by several dimensions. 

Two main dimensions—aggregation level and model type—are shown in Figure 2-1. An 

air transport demand model usually analyzes the demand system at a certain level of 

aggregation, depending on its purpose of study. For example, an airport demand model 

investigates airport activities and provides forecasts for airport planning. Aviation 

activities can generally be categorized into following—from high to low aggregation— 

levels: system (e.g. world or nation), city or metropolitan, airport, city-pair, airport-pair, 

and route. Note that a lower level of activities may be aggregated into higher level 

activities. If we know, for instance, traffic on all routes including a particular airport, we 

may sum them up to get the activities for the entire airport. 

Demand generation and assignment are two main types of models that can be found 

in the literature. Demand generation models focus on total demand at a specific level of 

8 
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aggregation. A demand model that forecasts yearly traffic for an airport belongs to this 

model type. Demand assignment models distribute total volumes at one level of 

aggregation to lower-level components. For example, a model might assign a fixed 

amount of origin-destination airport-pair traffic to different routes between the airports. 

Aggregation Level 

System 

City/ Metropolitan 

Airport 

City-pair 

Airport-pair 

Route 

Other 
Dimension,^' 

Demand 
Generation 

Demand 
Assignment 

Model 
Type 

Figure 2.1 Categorizations of Models 

Other dimensions—such as carrier-specificity and model form—can be added into 

Figure 2.1. Both demand generation and assignment models dealing with carrier-specific 

demand have been developed at different activity levels. For example, Wei and Hansen 

(2006) estimated an aggregate demand generation model, while Coldren (2005) studied 

demand assignment models, both at the route level and route-carrier level. 

9 
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Models may also be differentiated by form. Broadly, most demand generation 

models are regression models, while most assignment models are random utility models. 

Random utility models range from simple multinomial logit (e.g. Coldren et al. (2003)), 

to nested logit (e.g. Coldren and Koppelman (2005)), and to mixed logit (e.g. Adler et al. 

(2005) and Warburg et al. (2006)). Although the sophisticated models may perform better 

in explaining travel behavior, the increased complexity generally make them harder to 

estimate. In addition, as shown in this research, random utility models can also be used to 

predict demand generation. 

2.1.2 Demand Generation Model 

Demand generation models are older and better developed, compared to demand 

assignment models, in the literature. As a result, they are commonly used in practice, 

especially for predicting higher level activities. Examples include (1) Federal Aviation 

Administration (FAA) (2006), which predicted long-term annual aviation activities for 

the U.S. National Airspace System (NAS); (2) Metropolitan Transportation Commission 

(MTC) (2001), which projected aviation activities of the San Francisco Bay Area as a 

whole and for three major commercial each airports in the region; and (3) FAA's 

"Terminal Area Forecast (TAF)" (2007b), which provided annual enplanement forecasts 

at the airport level. 

Studies usually model demand as a function of socioeconomic and supply 

characteristics, and use either time series or cross-sectional data to estimate parameters. 

Higher level models, such as those of above examples, typically rely more on 

socioeconomic characteristics (e.g. income and population), and use time series data to 

10 
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estimate the models. Lower level models, on the other hand, are more likely to 

incorporate supply characteristics and use either time series or cross-sectional data. 

Kanafani and Fan (1974) estimated a city-pair model, which specified population, income, 

and travel time as explanatory variables, with cross-sectional data. More recently, Wei 

and Hansen (2006) estimated an aggregate generation model with cross-sectional data at 

route-carrier level. 

Note that models estimated with cross-sectional data assume that the same model 

can be used for all units in the cross-section (e.g. airports in airport models, and city-pairs 

in city-pair models) in the sample. In order to capture cross-sectional variation, stratifying 

the sample may be needed. In addition, this kind of model cannot capture system changes 

over time. They, thus, have limited capability to predict future activities. On the other 

hand, models estimated with time series data are more suitable for forecasting. 

Another issue for this type of model is that the need, at least for the lower level 

models, to consider the competitive effects of alternatives. In other words, it is usually 

not appropriate to assume that demands are independent across units. Different routes of 

the same origin-destination city-pair, for example, are very likely to compete with one 

another. Competition among different modes is also important, especially for short-haul 

markets. One solution for this issue is to use models, such as "abstract mode model" 

developed by Quandt and Baumol (1966). Another common solution is to introduce a 

demand assignment model, which will be discussed below. 

11 
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2.1.3 Demand Assignment Model 

Demand assignment models explain the distributions of demands among 

alternatives. In practice, these models are usually used in top-down traffic forecasting. 

Given traffic volumes at a higher unit of aggregation, these models assign traffic volumes 

to lower units. For example, a regional planning authority may use an assignment model 

to predict the aviation activities in its own region, based on FAA's national forecasts. 

While assignment models for high level of aggregation are usually simple (for 

example, analyzing historical shares with adjustments for different scenarios), more 

sophisticated assignment models have been developed for assignment to lower level of 

aggregation, mainly due to the need for modeling competition effects. In addition, since 

the objective of this research is to model the city-pair demand and its assignment to 

routes, we only focus on the sophisticated models dealing with lower level activities here. 

Three categories of relevant models—airport demand, route demand, and supply-demand 

assignment models—are discussed as follows. 

Airport Demand Assignment Model 

Airport demand assignment models explain the market shares of airports serving 

the same region (usually called multiple airport region or multiple airport system in the 

literature), such as a big city or metropolitan area. Varieties of model forms, causal 

factors, and alternatives (choice sets) have been investigated in the literature. 

Discrete choice models are the mainstream model used for airport demand 

assignments. Along with the development of discrete choice models, different variations 

of this model—including multinomial logit (MNL), nested logit (NL), and mixed 

12 
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multinomial logit (MMNL)—have been applied to this subject. Most of the earlier studies, 

such as Harvey (1987), Hansen (1995), and Windle and Dresner (1995), estimated MNL 

models to explain airport choice behavior. Although the MNL model form is easily 

applied and interpreted, it has the independent of irrelevant alternatives (IIA) property, 

which may lead to unreasonable results in some cases. Assume that there are three (A, B, 

and C) airports in a metropolitan area. The IIA property implies that an attribute (utility) 

change of airport C does not affect the ratio of the probabilities of choosing airport A and 

B. However, if the correlation between airport A and C is higher than that between 

airport B and C (e.g. airport A and C serve more overlapping markets than airport B and 

C do), people would expect that an attribute change of airport C has a larger impact on 

probability of choosing airport A than on that of choosing airport B. For example, a low 

cost carrier beginning to serve airport C is expected to attract more passengers from 

airport A than B, and the ratio of the probabilities of choosing airport A over B is 

expected to decrease, rather than staying the same. 

The NL and MMNL models provide more realistic results when the IIA property is 

violated. The NL model gives more flexible substitution patterns, and still keeps the 

computational simplicity of the MNL model. Using the NL models, Pels et al (2001) 

analyzed airport-airline choice behavior and Pels et al (2003) modeled airport-access 

mode choice behavior. The MMNL model allows for the most flexible substitution 

patterns among the three model forms. In addition, it can account for passenger 

heterogeneity. More recently, the MMNL models have been applied to allocating airport 

demand. Examples include Hess and Polak (2005a and 2005b), and Pathomsiri and 

Haghani (2005). Note that the advantages of the MMNL model are not free—they come 

13 
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at the price of computational complexity. The trade-off between flexibility and 

complexity does not always favor the most advanced model. 

Three causal factors for airport demand assignment models can be found in the 

literature—access time, flight frequency, and air fare. Most studies—for example, Harvey 

(1987), Windle and Dresner (1995), Pels et al (2001), Pels et al (2003), Basar and Bhat 

(2004), Hess and Polak (2005a and 2005b), and Pathomsiri and Haghani (2005)— 

specified both access time and flight frequency as their explanatory variables. Although 

recognized as a key factor in airport choice (e.g. Ashford and Benchemam (1987), and 

Harvey (1987)), air fare was not as widely incorporated as the other two factors. The 

main reasons are the data availability and reliability. Harvey (1987) omitted air fare 

because there was no information available on fare actually paid by individual travelers. 

Pathomsiri and Haghani (2005) mentioned that studies often found an insignificant (or 

illogical) effect of air fare on airport choices, due to relatively unreliable data. However, 

the insignificant effect was perhaps caused by the endogeneity bias3 of estimations, 

especially for those studies using highly aggregated air fare data. 

3 Whereas most studies expected the fare coefficients should be negative, the estimated 
coefficients may be more likely biased towards zero (insignificant) or positive 
direction, if the air fare variable is endogenous. Possible reasons for the endogeneity 
bias include simultaneity of supply and demand, and omitted variables. Because 
airlines may set fares based on some demand side variables—such as traffic flow, 
demand estimations ignoring simultaneity of supply and demand systems may give 
results that travelers seem to prefer higher air fares. In addition, higher fares may be 
due to better services. If a model does not take an important service characteristic into 
account, the estimated fare coefficient may be affected by the fact that passengers 

14 
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Some studies combine other dimensions of air travel into the airport demand 

assignment models by defining alternatives (choice sets). Airport-carrier, airport-access 

mode, and airport-carrier-access mode choice models have been developed, for example, 

by Pels et al (2001), Pels et al (2003), and Hess and Polak (2005b), respectively. In 

addition, Basar and Bhat (2004) parameterized the formation of choice sets, in order to 

allow different travelers to have different airport alternatives. 

Route Demand Assignment Model 

Route demand assignment models explain the market shares of routes serving the 

same O-D airport-pair or O-D city-pair4. Similar to the airport demand assignment 

models, discrete choice models are the mainstream models used for route demand 

assignments. Note that assigning O-D airport-pair traffic to routes assumes that there are 

no substitution effects between routes of different O-D airport-pairs, even though these 

routes serve the same O-D city-pair. 

The route demand assignment model for city-pairs, which combines the airport 

demand assignment for multiple airport regions and the route demand assignment for 

airport-pairs, is of interest when the study area includes multiple airport systems (MAS). 

Kanafani and Fan (1974), and Kanafani et al (1977) developed route demand assignment 

models for the San Francisco- Los Angles city-pair. Both of the cities are served by 

prefer better services (measured by the characteristic). Therefore, both simultaneity 
and omitted variables may lead the estimated coefficients that are biased upward. 

4 An airport-pair is equivalent to a city-pair only if both the origin and destination of the 
city-pair are served by single airport. 

15 
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multiple airports. Total travel time (including airport access time), air fare, and flight 

frequency were used in their models to explain the market share differences among the 

routes. As for model forms, Kanafani and Fan (1974) designed a special probabilistic 

form and Kanafani et al (1977) applied the (aggregate) MNL model. 

Compared to those for city-pairs, more route demand assignment models for 

airport-pairs can be found in the literature. Some studies assign airport-pair traffic to 

carriers and routes. For example, Coldren et al. (2003) estimated a MMNL model, and 

Coldren and Koppelman (2005) applied a NL model for route-carrier demand 

assignments. Both of these used computer reservation systems data from a commercial 

source. In addition, Adler et al. (2005) and Warburg et al. (2006) used revealed- and 

stated-preference survey data from individual travelers to estimate the mixed logit models 

that account for the heterogeneity of travelers in route-carrier choices. 

In addition to the pure demand assignment model, some studies have developed 

models with both supply and demand sides. Studies with this approach are discussed 

below. 

Supply-Demand Model 

The supply-demand models are usually composed of a discrete travelers' choice 

sub-model for predicting demands, and an optimization sub-model of airlines' behavior. 

The most widely used discrete choice model for this topic is the multinomial logit (MNL) 

model, whereas the nested logit (NL) model is also applied by other studies (e.g. Hansen 

(1996), Weidner (1996), and Hsiao and Hansen (2005)). Examples of applying the MNL 

model include Kanafani and Ghobrial (1985), Hansen (1990), Hansen and Kanafani 
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(1990), Ghobrial and Kanafani (1995), Hansen (1995), Adler (2001), and Adler (2005). 

Note that all the models mentioned in this sub-section are route demand assignment 

models for airport-pairs, except for Hansen's (1995) model, which is an airport demand 

assignment model. 

To capture airlines' behavior, some studies, which often focus on airline 

competition issues, apply an optimization model and assume that airlines pursue maximal 

profits as their objective functions. Hansen (1990), Adler (2001), Adler (2005), and Hsu 

and Wen (2003) are examples of such studies. Instead of an optimization model, other 

approaches have been used in order to incorporate the supply side of the system. For 

instance, Kanafani and Ghobrial (1985) assigned the maximum frequency of service on 

each link subject to the load factor above the breakeven load factor on that link. 

These supply-demand models reflect the behavior of travelers and airlines, and thus 

they may offer better understanding of the systems. However, these models are usually 

more complicated and may take a long time to equilibrate. Especially for models with 

integer programming sub-models, it is harder to implement these models on large scale 

networks, such as the whole domestic air transportation network of the United States. 

2.1.4 Discussion and Summary 

In this section, strengths and weaknesses of different models, including models in 

the literature and the proposed model, are discussed by model components: model type 

and aggregation level, model form, choice set, and data issues. Finally, features of these 

models are summarized. 

17 



www.manaraa.com

Model Type and Aggregation Level 

Since lower level activities may be aggregated into higher level activities, a model 

of lower aggregation level can be more flexible for practical applications and also can 

better explain air travel behavior. For example, the impacts of raising passenger segment 

fees5 on route and airport demand can be more accurately estimated by a route demand 

model, rather than an airport demand model, since a route demand model can better 

capture a traveler' choice of connecting airports. Lower level aggregation models must 

take competition effects of alternatives into account. Although demand assignment 

models can be used to capture the competition effects, they implicitly assume total 

demand is inelastic. Demand generation models enable total demand to change with 

characteristics of alternatives. Thus, a model combines both demand generation and 

demand assignment is preferable. 

In the literature, most air travel studies only deal with either demand generation or 

demand assignment. Researchers may estimate these two types of models separately and 

apply these models sequentially—generating demands at one level of aggregation and 

then distributing the estimated volumes to lower-level components. For instance, 

Kanafani and Fan (1974) estimated demand generation and demand assignment models 

for the San Francisco-Los Angles city-pair—generated the city-pair demand first, and 

then distributed the total volume to different routes between these two cities. However, 

5 Air passengers are charged the segment fees based on the number of flight segments of 
their routes. For example, if the current fee is 3 dollars per segment, a passenger 
choosing a direct route only pays a 3 dollar fee. However, if the passenger chooses a 
one-stop route, he or she pays 6 dollars for the segment fee. 
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the sequential approach that does not include a feedback system may be problematic, 

because it implicitly assumes that the total volume is fixed for the assignment model. 

Adding a feedback system can improve the sequential approach; however, this needs 

more complicated model systems and consumes more computation time. A model dealing 

with demand generation and assignment simultaneously can be a better solution. 

This research models air travel demand at the route level and simultaneously deals 

with demand generation and assignment. The proposed model is consistent with random 

utility theory. For air travel activities at a lower aggregation level, city-pair models are 

suitable for estimating demand. They are also the most common demand generation 

models in the literature, according to Kanafani (1983). This research, therefore, develops 

the model that generates city-pair demands and distributes them to routes, as the shaded 

areas shown in Figure 2-1. In addition, the model combines airport and route choices in 

demand assignment, since both origin and destination cities may be served by multiple 

airports. 

Model Form 

Discrete choice models—including the MNL, NL, and MMNL models—are the 

usual demand assignment models. The MNL model is widely used although its IIA 

property may lead to unreasonable results. The MMNL model provides the most flexible 

substitution patterns but increases the computational complexity. The NL model gives for 

more flexible substitution patterns, and still keeps the computational simplicity. Although 

these three model forms are all available in theory, researchers should make their own 
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choices depending on their problems and objectives. In this regard trade-offs between the 

flexibility and complexity must be considered. 

This research chooses the aggregate NL model (and also estimate the aggregate 

MNL6 model for comparisons) for the empirical study, because: (1) the empirical 

objective of this research focuses on the coefficients and ratios of coefficients, and the 

NL model can serve this purpose well7, and (2) the NL model provides a good balance 

between flexibility and computational complexity. There is a need to reduce the 

computational complexity because the empirical study uses the U.S. domestic route data 

for 40 quarters, which is a very large data set (about 1.66 million observations), allowing 

us to investigate air demand variation among routes and markets over time. 

Choice Set 

Most of the demand assignment models in the air travel literature, except Hong and 

Harker (1992), Adler (2001), and Adler (2005), do not include an "outside good" 

alternative, which allows a potential traveler to choose none of the listed alternatives. In 

an air route choice case, a potential traveler may not travel (or travel by other modes, 

6 Note that when individuals are homogeneous, the IIA property also holds at the 
aggregate level. In this case, the properties of aggregate own and cross elasticities are 
similar to those of disaggregate own and cross elasticities. Refer to Ben-Akiva and 
Lerman (1985) for details about the IIA property and the differences between 
disaggregate and aggregate elasticities. 

For instance, Brownstone and Train (1999) mentioned that "If indeed the ratios of 

coefficients are adequately captured by a standard logit model, as our results and those 
of Bhat (1996a) and Train (1998) indicate, then the extra difficulty of estimating a 
mixed logit or a probit need not be incurred when the goal is simply estimation of 
willingness to pay, without using the model for forecasting." 
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such as car or rail) if none of the route alternatives is as attractive as that option. However, 

a route choice model without the "outside good" alternative forces the potential traveler 

to pick one of the routes. 

A demand assignment model without an "outside good" alternative implies that 

total demand is independent of the attributes of the disaggregate alternatives. These 

attributes affect market shares among alternatives, rather than the total demand. This 

property restricts the application of the model as a planning and policy analysis tool, 

since a system improvement may lead to changes in total demand. Our research takes the 

"outside good" alternative into consideration. 

Data Issues 

In this section, two data issues are discussed: aggregation levels (aggregate and 

individual data), and data dimensions (cross-sectional, time series, and panel data). 

Most demand generation models in the literature use aggregate time series data, 

while some lower activity level generation models may use aggregate cross-sectional data. 

On the other hand, most demand assignment (including airport and route assignment) 

models using discrete choice model forms are estimated by cross-sectional data, either 

from surveys of individuals, or from aggregate statistics8. While airport choice models 

typically use cross-sectional data from surveys of individuals, route choice models are 

8 Discrete choice models estimated by aggregate data are sometimes referred as market 
share models, or aggregate choice models (e.g. aggregate multinomial logit model). 
The supply-demand models usually apply the market share models to their demand 
assignments. 
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more likely to be estimated by aggregate statistics, since it is easier to do a survey in a 

single metropolitan area than at a national level. 

Surveys of individuals can collect more detailed information. The models estimated 

on survey data, thus, may better explain travel behavior, if the surveys are well designed. 

However, due to their costly nature, survey data is usually limited in terms of sample size 

and geographical area, reducing generalizability of estimation results. For instance, an 

airport choice model estimated by San Francisco Bay Area data may not apply to other 

metropolitan areas. In addition to its scarcity, problems with surveys of individuals 

include limited public availability and their inability to track changes over time. 

Aggregate statistics, by contrast, are usually available for different geographical areas 

and reported on a regular basis, enabling the use of panel data analysis techniques. 

This research builds a route level model that can be applied to a large airline 

network—such as the whole U.S. air transportation system—as a bottom-up policy 

analysis tool. Survey data for this type of empirical analysis is unavailable. Publicly 

available aggregate (route level) data is employed. Since these data are collected and 

reported on a regular basis, it is possible to access changes in the structure of air travel 

demand over time, as well as to fuse inferences on both cross-sectional and time series 

variation. 
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Summary 

As shown in Table 2.1, several important model features have not been treated 

appropriately at the city-pair route level. These features are discussed below, and the 

proposed model improves the existing models by including these features. 

• Most models do not deal with multiple route and airport systems together—they may 

model one of these two problems. The proposed model handles these two problems 

simultaneously. 

• The proposed model uses aggregate panel data because of its ready availability, and to 

capture the cross-sectional and the time series variation of route demand. 

• Only a few studies capture travel behavioral changes over time, and airport congestion 

effects. This research investigates these behavioral changes and effects. 

• More importantly, most existing models in the literature only deal with either demand 

generation or demand assignment, or treat these two phenomena sequentially. The 

sequential approach may be inappropriate since it implicitly assumes that the total 

volume is fixed for the assignment model—irrelevant to the service levels of 

alternatives. This research deals with demand generation and assignment in a single 

model, by including an outside good alternative (non-travel or travel by other modes). 
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Table 2.1 Features of Different Models 

^ - _ ^ ^ Model type 
Model feature ^ _ _ ^ ^ 

Deal with multiple routes 

Deal with multiple airport systems 

Include "outside good" alternative 

Capture time series variation 

Capture cross-sectional variation 

Use survey data 

Use aggregate data 

Capture behavioral changes over time 

Capture airport congestion effects 

Demand 
generation 

model 

© 

© 

© 

Airport 
assignment 

model 

© 

© 

© 

Route 
assignment 

model 

© 

© 

© 

© 

© 

© 

Proposed 
model 

• 

V 

S 

s 
• 

V 

• 

s 
Note: where © represents these models usually have the feature; 

© represents only a few of these models have the feature; 
•/ represents the proposed model has the feature; 
A blank cell indicates that these models usually do not have the feature. 
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2.2 The Demand Model 

2.2.1 Conceptual Framework 

This research models city-pair air passenger demand at the route level9. In general, 

potential trips between two cities are derived from the socioeconomics activities in both 

cities. Potential travelers may have many choices regarding these potential trips. They 

may avoid air travel altogether by choosing different modes, such as auto and rail, or they 

may decide not to travel at all. Within the air mode, they may select different routes, of 

which airports and segments (non-stop links) are basic elements. Thus, a route choice 

involves choices of airports (origin, destination, and connecting airports) and segments. A 

change in the characteristics of a route may affect the attractiveness of this route, or of a 

group of routes, because different routes in a market may share the same airports and/or 

segments. Aggregate air demand in a city-pair market may also be affected by changes in 

individual route characteristic or that impact routes across the board. 

Intercity travel demand can be illustrated by an example of one city-pair (A-B), as 

shown in Figure 2.2. Potential travelers in this market have one "outside good" 

alternative (non-travel or travel by other modes) and 11 route alternatives, including three 

non-stop routes (O1D2, O2D1, and O3D2) and eight one-stop routes (four for each of the 

connecting airports, Hi and H2). From the airport view point, since both city A and B 

9 Note that this conceptual model can be easily applied to the route-carrier level—simply 
differentiating routes by carriers. However, adding the carrier dimension yields to a 
more complicated empirical model. 
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are served by multiple airports, potential travelers may leave from the airport Oi, O2, or 

O3, and arrive at the airport Di or D2. Examples of routes sharing the same airports and 

segments include: (1) the three routes departing the same origin airport Oi, and (2) the 

routes O1H1D1 and O3H1D1 which both involve the segment H1D1. While raising the fare 

of the route O2D1 may make this route less attractive, the severe delay at connecting 

airport HI may reduce the appeal of all four routes through Hi. 

City A H2 City B 

t Origin airport A Destination airport 

^ No travel or non-air trips H Connecting airport 

Figure 2.2 City-Pair Air Passenger Demand in a Hub-and-Spoke Network 
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The general form of city-pair air passenger demand model is given by the 

formulation in Equation (2.1). The air traffic on a route is equal to the product of the 

market (city-pair) saturated demand and the market share of this route. The market 

saturated demand (or total potential demand) can be modeled as a function of 

socioeconomic and geographic characteristics of this market, such as populations of the 

origin and destination cities, or distance. The route market share is determined by a 

function of the vector of socioeconomic characteristics of this route, and supply 

characteristics for this route, its competing routes, and the "outside good." 

Qrl=Tm{r)l-MSrl 

= T(Dm(r)l).MS(Dr„Srl,S_rl,SQ!) 

where: 

Qrt is the air traffic on route r at time t; 

Tm(r), is the saturated demand of the market (city-pair) m , served by route r, 

at time t\ 

MSrt is a market share of route r at time t; 

T(») and MS(«) are a saturated demand function and a market share function, 

respectively; 

Dm(r)l is a market-specific (city-pair-specific) socioeconomic and geographic 

characteristic vector of market m , served by route r, at time t; 

Drt is a route-specific socioeconomic and geographic characteristic vector of 

route r at time t; 
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Srt is a supply characteristic vector of route r at time t; 

S_rl is a metric containing the supply characteristic vectors of route r 's 

competitors at time t; 

S0t is a supply characteristic vector of the "outside good" 0 at time t. 

In equation (2.1), Dm(r)t and Drt include different sets of socioeconomic and 

geographic variables. Typical socioeconomic and geographic variables used in the 

literature are population, income, employment of cities (metropolitan areas), and distance. 

In addition, Drt may include the socioeconomic and geographic characteristics of the 

city-pair served by the route (Dm(r)l), and plus the socioeconomic characteristics of the 

connecting airports. A modeler may specify that Drl and Dm(r)l vectors are identical. In 

this case, although these market characteristics (Dm(r)t) are the same across the routes in 

the same market, they still can help to explain the market share variation between the air 

routes and the non-air alternative, both across markets and over time, since there is an 

"outside good" alternative in the choice set. 

The market share variation of alternatives in a market are mainly explained by 

supply characteristics of these alternatives (Srt, S_rt, and S0l). In other words, the 

market share of a route depends on attractiveness of its characteristics, compared to those 

of other routes and the "outside good" in the same market. Market characteristics, in 

addition, can also affect the total air traffic. Long haul markets, for example, may have a 

higher total market share of all air routes than short haul markets, all else equal, because 
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there is less competition among modes in long haul markets. Recall that airports and 

segments are basic elements of a route. Supply characteristic vectors of routes should be 

composed of characteristics of these routes, and of the airports and segments involved. 

Using Srt as an example, it can be decomposed into three parts: Srl = {Srt, Sa{r)l, Sg(r)t}, 

where Sa{r)t and Sg(r)l are characteristic vectors of the airports and the segment (s) 

served by route r at time t, respectively; S'rt is a pure route characteristic vector of 

route r at time /. Typical supply characteristic variables include: air fare, travel time, 

and routing types (pure route variables), ground access time and airport delay (airport 

variables), and flight frequency (a segment variable). 

The saturated demand and the market share functions give the total potential traffic 

of a market and the market share of a route (or the outside good), respectively, when all 

socioeconomic, geographic and supply variables are given. Although these functions are 

specified and estimated in the later chapters, the methodological issues in using them are 

discussed in the following two sections. 

2.2.2 Saturated Demand Function 

The saturated demand function defines the relationship between the total potential 

demand of markets and certain causal factors. Whereas socioeconomic variables are 

easily justified as the causal factors for the saturated demand, estimating the function may 

not be straightforward because only the realized traffic, rather than the "potential" traffic, 

can be observed. From the economic literature, two types of approaches have been 

proposed by empirical studies on different industries. 
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The first approach, which is more commonly found in the literature, is to assume a 

reasonable maximum for the potential based on a socioeconomic variable. For example, a 

researcher may assume Tm{r)t = a * Mm(r)t, where a is a proportionality factor and 

Mm(r)t is the observable socioeconomic variable chosen for reflecting the potential total 

traffic. Nevo (2001) analyzed the market shares of different brands on the ready-to-eat 

cereal industry. The potential number of servings in a city in a quarter was defined as a 

function of population, a *(population)*365/4. The potential number of servings was 

calculated by assuming a =1, i.e., every resident may consume one serving per day. The 

main advantage of this approach is its simplicity. However, in order to provide 

convincing results, justification and coefficient sensitivity tests for this assumption are 

needed. 

The second approach is to estimate a model for this function (e.g. estimate the 

parameter a). Because the saturated demand is a part of the whole demand model and 

the "potential" traffic cannot be observed, estimating the saturated demand model is more 

complicated. System equations and/or additional assumptions to simplify the estimation 

may be used by this approach. For example, Hansen (1996), and Wei and Hansen (2005) 

assumed that the total demand is much more than the total traffic in a market, and then 

separated the estimation of the saturated demand model from that of the whole demand 

model. 
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This research would suggest the first approach for the proposed model. Even 

though this approach is simple, it can be shown10—at least for the multinomial logit and 

nested logit model forms—that the proportionality factor setting may only affect the 

estimated intercept of the market share model if the proportionality factor is set large 

enough. If the intercept is not the main coefficient of interest, this approach should work 

well. In addition, socioeconomic variables in the market share model {Drl) can help to 

explain the market share difference between all routes and the outside good. Thus, the 

impacts of choosing an inappropriate parameter (e.g. a) and socioeconomic variables 

for D'm(r)t can be reduced. 

2.2.3 Market Share Function 

Whereas alternative methods exist in the literature", the usual specification for the 

market share function is a discrete choice model. Only this type of model is discussed in 

this section, since the empirical analysis of the research reported here follows the discrete 

choice literature. To be specific, the aggregate discrete choice models, which are based 

on choice behavior of individuals, are the focus of our interest. This type of model is the 

most appropriate for the objectives of this research: to develop a route demand model, 

Refer to Appendix A for more details. 

For example, some studies directly explained the market share (as a dependent 
variable) by causal factors using a linear regression model, or a multiplicative model. 
Other studies transformed the dependent variable to assure that the predicted market 
share is between 0 and 1. 
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which can be applied to a large network system, using publicly available aggregate (at the 

route level) data. 

The indirect utility of potential traveler / from route r at time / can be 

formulated as Equation (2.2), 

K 

" w = Z Pk X«k + Zr, + Mir, + £ir, > ( 2 2 ) 
k=\ 

where: 

xrtk is an observable characteristic k of route r at time t, i.e., it is a 

observable supply characteristic variable in vector Srl; there are K 

observable characteristics specified in the utility function; 

f3k is a parameter to be estimated for characteristic k; 

%rt is a term to capture unobservable route characteristics at time t; 

juirl is a term to capture individual deviations, which can be modeled as a 

function of individual characteristics and route characteristics; 

sjrt is a stochastic term. 

In order to derive the market share function for route r at time t, additional 

assumptions are needed . The first assumption is that every potential traveler chooses 

only one alternative that gives the highest utility from all alternatives (including the 

12 Further discussions and formulas can be found in the discrete choice literature (e.g. 
McFadden (1981)) and its applications, such as Berry et al (1995) and Nevo (2001). 
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"outside good," and all the routes). This assumption allows us to define the set of 

unobserved variables ( A n ) that induces the choice of route r at time /. Note that this 

assumption may be unrealistic for analyzing general products. For example, a consumer 

may purchase two products at the same time, or may consider the choice between two 

small size items of a brand and one large size item of another brand. However, this 

assumption is easier to justify in the route choice model, since for each realized trip a 

traveler always travel through only one route. 

Assuming ties occur with zero probability, the market share of route r at time t 

as a function of the characteristics of all alternatives competing in the market is given by 

integrating the population distribution functions of unobserved variables over the range 

of Arl . An operational market share function needs to make assumptions on the 

population distribution functions, and then the integral can be calculated. Different 

assumptions on the population distribution functions lead to different discrete choice 

models. Three models—MNL, NL, and MMNL—are discussed below. 

Multinomial Logit Model 

The most frequent and simple way is to assume that (1) potential travelers are 

homogeneous in the observed characteristics—no individual deviations (juirt = 0) except 

for the stochastic terms sirl 's ; and (2) the stochastic terms, eirt 's, are independent and 

identically distributed (i.i.d.) across travelers, routes, and time with a type I extreme value 

distribution. This leads to the multinomial logit model, which captures the mean behavior 
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of potential travelers. If we normalize the utility from the outside good alternative to zero 

K 

( X ftkxotk + €ot = 0 X the market share of route r at time t is 
k=\ 

exp(£/w+£() 
MSrt = ^—-^ , (2.3) 

1+ Y, exp(I^*+^) 
JeR(m(r)t) k=\ 

where R(m(r)t) represents all routes in the market served by route r at time /. 

Since potential travelers are assumed to be homogeneous, the IIA property, which 

has been discussed in section 2.1.3, also holds at the aggregate level. An implication of 

the IIA property at the aggregate level can be shown by reviewing cross elasticities of 

market shares. The aggregate cross elasticity of the market share with respect to a 

characteristic (k) of a competing route (j) is given by 

7 = ^ I L . ±*L_ = _px . Ms . (2.4) 
'"'* dxJlk MSrt

 Hk Jtk }t y ' 

The cross elasticity for route r does not depend on the characteristics of route r. 

In addition, the cross elasticity is the same for all other routes. If route A and route B 

have the same market shares, a change in characteristic of their competing route (C) will 

have the same impact on the market shares of these two routes. This property may be 

counter-intuitive if people believe that route C more likely substitutes for route A than for 

route B. For instance, suppose route A and route C originate from the same airport, while 

route B starts from another airport. Fare decreases of route C are expected to attract more 
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passengers from route A than from route B. However, the MNL model predicts the same 

market share changes for route A and route B. 

Nested Logit Model 

The NL model gives more flexible substitution patterns, and still keeps the 

computational simplicity and tractability of the MNL model. In the NL model, all 

alternatives are grouped into exhaustive and mutually exclusive nests. According to the 

nest structure, the correlations of the stochastic terms in the NL model are specified by a 

variance component structure, instead of assuming that the stochastic terms are i.i.d.. As a 

result of the specification, the IIA property does not hold across nests, although it still 

holds within each nest. Thus, the substitution patterns of alternatives become more 

flexible. An alternative is more likely to substitute for an alternative in the same nest, 

than for an alternative in different nests. In the route choice example above, if route A 

and C are in the same nest and route B is in another nest, the NL model predicts, as one 

would expect, that fare decreases of route C attract more passengers from route A than 

from route B. 

Note that the NL model can be decomposed into multinomial logit models13, since 

the probability of choosing an alternative can be written as the product of a marginal and 

a conditional probability—each of them takes the multinomial logit form. Assuming the 

potential travelers are homogeneous, the decomposition can also be applied to the 

13 Refer to Train (2003) for details. 
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aggregate level14—replacing the probabilities by market shares. The decomposition 

makes the interpretation of the NL model easier and also provides an alternative for 

model estimation. 

Two additional attributes of the NL model are worthy of mention. The first is that 

when all correlations of the stochastic terms are zero the NL model becomes the MNL 

model. Thus, the MNL model is a special case of the NL model. The other important 

attribute is that, like the MNL model, the market shares of the NL model have a closed 

form expression—no numerical method for the market share integral is needed. No 

market share equation for a NL model provided here because it depends on the nest 

structure. However, it can be decomposed, in general, into marginal and conditional 

market shares. Equations similar to (2.3) can be used for these marginal and conditional 

market shares. Then, the market share of a route can be determined. All above attributes 

make the NL model popular for empirical studies. 

One issue of the NL model is that the nesting structure, including contents of nests 

and order of nests, has to be determined. In our route choice model, since different routes 

of a market may share the same airports and/or segments, routes can be grouped by their 

common characteristics. Although this provides a priori information on the possible nest 

structure, the final nesting structure needs to be determined empirically as discussed in 

the next chapter. 

14 Berry (1994) showed the decomposition for a two level aggregate nested logit model. 
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Mixed Logit Model 

The MMNL model, also called the random coefficient model, provides the most 

flexible substitution patterns among these three models, but also has the greatest 

computational complexity. Since this research does not estimate an MMNL model in the 

empirical analysis15, here we only briefly discuss about the MMNL model. Detail 

information can be found in the literature, such as Berry et al (1995) and Nevo (2001). 

The MMNL model allows individual heterogeneity16, i.e., potential travelers may 

have different preferences for route characteristics. In order to incorporate this capability, 

the individual deviations (juirt) of the indirect utility function can be modeled as a 

function of individual characteristics and route characteristics. For example, allowing 

K 

individual characteristics to interact with route characteristics17, /ulrl ='5]o'kvitkxrlk , 
k=\ 

extends the Equation (2.2) to (2.5), 

K K 

"ir, = Y*PkXr* + Zrt + Z^^**"* + £irl , (2.5) 
k=\ k=\ 

v v . 1 v _ _ v / 

mean for route r at time t individual / deviation at time 1 

15 Reasons are discussed in the Literature Review section. 

16 Note that in the MNL and the NL models, the individual heterogeneity is considered 

only through the stochastic term (s ir l), not related to any route characteristic. 

17 Refer to Berry et al (1995) for more details. They used a similar formula in their 

automobile demand analysis, although their model dealt with cross-sectional data. In 

addition, Nevo (2001) extended the Berry et al's model by adding demographic 

characteristics, into juirt function, to capture individual heterogeneity, and by using 

panel data. 
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where: 

vitk is a mean zero random variable, associated with route characteristic k for 

individual / at time t, with a known distribution; 

ok is a parameter to be estimated, and represents the standard deviation of the 

marginal utilities associated with route characteristic k, if vitk is scaled 

such that E(vflk) = \. 

In Equation (2.5) the indirect utility of potential traveler / from route r at time 

t can be decomposed into two parts: the mean for route r at time t, and the deviation 

from the mean for the potential traveler / at time t. For the potential traveler /, the 

marginal utility associated with route characteristic k at time t is given by 

(Pk + akvitk). Assuming the stochastic term, etrt 's, are independent and identically 

distributed (i.i.d.) across travelers, routes, and time with a type I extreme value 

distribution, leads to the MMNL model. 

Note that the NL model is a restricted version of the MMNL model (Berry et al 

(1995)). However, the advantages of the MMNL model come with the price of 

computational complexity, because the integral defining market shares of the MMNL 

model cannot be computed analytically. Numerical methods are needed to determine the 

market shares. 
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Chapter 3 Empirical Analysis of the Passenger Demand for Air 

Transportation 

This chapter shows how the proposed model will be implemented. Model 

specifications, including model forms, nesting structures, and causal factors, are 

discussed first. Then information about data sources, data compilation, and summary 

statistics is provided. Estimation methods and estimation results are presented at the end 

of the chapter. 

3.1 Model Specifications 

3.1.1 Model Forms and Nesting Structures 

As discussed in chapter 2, this research chooses the aggregate nested logit (NL) 

form for the market share function, and also estimates the aggregate multinomial logit 

(MNL) model for comparisons. For the nesting structures of the models, routes are 

grouped in a nest by assuming that the routes with more common characteristics are more 

likely to be competitors, i.e. higher correlations among these routes. The common 

characteristics used in the empirical analysis include (1) air routes or the non-air 

alternative, (2) origin-destination (O-D) airport pair, and (3) routing type (direct or 

connecting route). Based on different combinations of these characteristics, five nesting 

structures are examined—including one MNL, one two-level NL, two three-level NL, 

and one four-level NL model. 
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The MNL model is shown in Figure 3.1, in which all air routes and the non-air 

alternative are grouped together. The MNL model can be considered as a special case of 

the NL model—when all the scale parameters of the NL model are equal to one, the NL 

model becomes the MNL model. The market share of a route or the non-air alternative is 

given by Equation (2.3). 

Non- O, Oi 0, 0, O, O, O, Oi 00 00 00 00 

Air D, H, H2 Hh D2 H, H2 Hh Dn H, H2 Hh 
Di D, D, D2 D2 D2 Dn Dn Dn 

Figure 3.1 Nesting Structure: Multinomial Logit 

An air route in Figure 3.1 (and Figure 3.2 to 3.5) is presented by its origin airport 

(O), destination airport (D), and connecting (hub) airport (H), if any. For example, in the 

city-pair market 0-D, the route OiDj is the direct route from the origin airport 1 to the 

destination airport 2, and the route O1H2D2 is the connecting route from the origin airport 

1, through the connecting airport 2, and then arriving at the destination airport 2. In this 

research we only consider routes with at most one connecting airport as alternatives. Thus, 

there is only one H for each connecting route. Removing routes with more than one 

connection makes the models more tractable with little loss of generality, since the vast 

majority of U.S. domestic trips involve less than two connections. 

40 



www.manaraa.com

While the four NL models are presented in following individual sub-sections, their 

common features—ratio(s) of scale parameters and model decompositions—are 

discussed here. The estimated ratio(s)18 of scale parameters of an NL model can be used 

to determine whether the nested logit model is consistent with utility-maximizing 

behavior19 for all possible values of the explanatory variables, and whether the 

higher-level NL model collapses to a lower-level NL (or MNL) model. Specific 

conditions of the ratio(s) of scale parameters are discussed in each nesting structure 

sub-section. 

As mentioned in chapter 2, the NL model can be decomposed into multinomial 

logit models, since the market share of a route can be written as the product of a marginal 

market share and a conditional market share—each of them takes the multinomial logit 

form. To illustrate the decompositions of the NL models, the indirect utility of a potential 

traveler / from route r at time t, Equation (2.2), is expressed as Equation (3.1), 

assuming that potential travelers are homogeneous in the observed characteristics—no 

individual deviations (juirl = 0) except for the stochastic terms eirt 's. 

Uir, 
*=1 

= Wmt+Zpl + Y,+sirt , (3.1) 

= wmt + zpt + Y: + Y;l+£irl 

\i 

19 

Only the ratio of two scale parameters, rather than each individual scale parameter, 
can be identified from the data. 

Refer to Train (2003) and Ben-Akiva and Lerman (1985) for details. 
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where: 

Wml represents the market-specific utility of route r, which is the same for all 

routes in the market m at time t; 

Z represents the O-D airport pair-specific utility of route r, which is the same 

for all routes of the O-D airport pair p at time t; 

Yrt is the route-specific utility, which varies over routes in the market m at 

time t; 

Yr
d, is the route-specific utility for a direct route , which varies over routes in the 

market m at time t for the direct route; Yr
d = Yrt • dr; 

Yc
rt is the route-specific utility for a connecting route, which varies over routes in 

the market m at time t for the connecting route; Yc
rt = Yrt - ( 1 - dr); 

dr is the binary indicator variable for the direct route; 

A, if the route r is a direct route 
dr = { 0, otherwise 

The second equality in this equation decomposes the utility into three parts: the 

market-specific utility, the O-D airport pair-specific utility, and the route-specific utility. 

This helps to separate the non-air alternative from the air routes, and to distinguish air 

routes between different O-D airport pairs. The third equality further differentiates the 

route-specific utility between the direct and the connecting routes. This helps to explain 
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the possible correlation differences between the direct and the connecting routes. Details 

about the model decompositions are shown in each nesting structure sub-section. 

Two-Level Nested Logit 

The nesting structure of the two-level nested logit (NL2) model is shown in Figure 

3.2, in which the non-air alternative is separated from the air routes. With this nesting 

structure, the IIA property holds among the air routes of a city-pair market, but it does not 

hold between the non-air alternative and one of the air routes. In other words, potential 

travelers are more likely to switch from one air route to another air route, than from one 

air route to the non-air alternative. 

Oi Oi O, Oi O, O, Oi Oi Oo O0 00 Oo 
Di H, H2 Hh D2 H, H2 Hh Dn Hi H2 Hh 

Di Di D, D2 D2 D2 Dn Dn Dn 

Figure 3.2 Nesting Structure: Two-Level Nested Logit 

Applying Equation (3.2), the two-level NL model can be decomposed into two 

MNL models: the binary logit model to capture the decision on traveling by air or not, 
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and the MNL model to determine the conditional market share of a specific route given 

that the air routes are chosen. The two MNL models are linked by the inclusive value 

h,-

MSrl=MSarMSrt]al (3.2) 

where: 

MSr!,al represents the conditional market share of route r at time t given that 

the air routes of the market are chosen; MS 
rt\m y e(Z„+J-;,)/A„ ' 

jzR(m(rWeP(j) 

MSal is the marginal market share of the air routes at time t; 

MS, 
l + e(l 

Iat is the inclusive value of the air routes at time t; Ial = ln( ]>] e{Z"+Y"v "); 
jsR{m(r)t);lzP(j) 

Xa and Am are scale parameters associated with the air route nest and the top 

(air vs. non-air) nest, respectively; although these simplified parameters are 

not changed over time or over markets, they can be easily modified if 

needed; 

R{m(r)t) represents all air routes in the market served by route r at time /. 

P(j) is the O-D airport pair of route j . 
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The two-level NL model is consistent with utility-maximization for all possible 

X X 
values of the explanatory variables if 0 < —- < 1, where -2~ is the coefficient of Iat, 

K K 

the inclusive value of the air routes at time t. Note that either Xa or Xm can be 

normalized to one. The condition becomes 0 < Xa < 1 in the case of normalizing Xm = 1. 

X 
In addition, if the hypothesis —- = 1 cannot be rejected, the two-level NL model 

K 

reduces to the MNL model. 

Three-Level Nested Logit—A 

In addition to differentiating air routes from non-air alternative, the first three-level 

nested logit (NL3A, thereafter) further investigates the correlations of connecting routes 

with the same O-D airport pair. The nesting structure of the NL3A model is shown in 

Figure 3.3. This model implies that (1) direct routes of a market have proportional 

substitution patterns, and (2) connecting routes more likely substitute for other 

connecting routes within the same O-D airport pair than substitute for other routes (direct 

routes and connecting routes of other O-D airport pairs). For example, the connecting 

route O1H1D1 more likely substitutes for the connecting route O1H2D1, than for the route 

OiD2 or 0,H2D2. 
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O, O, Oi 0, O, Oi 00 00 Oo 
H, H2 Hh H, H2 Hh H, H2 Hh 
D, D, D, D2 D2 D2 Dn Dn Dn 

Figure 3.3 Nesting Structure: Three-Level Nested Logit—A 

The NL3A model can be decomposed into three MNL models by Equation (3.3). 

The common part of the formula is the total market share of the air routes, MSal, 

handled by the binary logit model. The second MNL model deals with the conditional 

market shares of direct routes and groups of connecting routes—all connecting routes of 

an O-D airport pair are considered as a group. Given that the air routes are chosen, a 

direct route competes with other direct routes and groups of connecting routes. The 

conditional market shares of connecting routes are modeled by the third MNL model, in 

which a connecting route competes with other connecting routes of the same O-D airport 

pair, given that the O-D airport pair is chosen. The three MNL models are linked by the 

inclusive values /„, and I,. 
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MSr,=MSal-MSpl]al.MSrllp,-(\-dr) 

+ MSal-MSrtlal.dr 

where: 

MSrt, , represents the conditional market share of route r at time t given that 

the connecting routes of the O-D airport pair are chosen; 

MS,_ = 
eWK 

jeRc(p(r)t) 

MS t,al represents the conditional market share of the connecting routes of the 

O-D airport pair p given that the air routes of the market are chosen; 

(Z„,+A^,)/A„ 

MS 
p>\« v jif+nvk. ^ \^e(zll+xcif,)/Aa 

lePc(m(r)t) 

MSrAat represents the conditional market share of route r at time t given that 

the air routes of the market are chosen; 

MS, 
e(Zp, + Y?,)lla 

rt\°» ye(Zll+Yf,yxa+ yg(z,MAVK 

jeR*\m(r)t)\leP"' (]) lePc(m(r)t) 

MSat is the marginal market share of the air routes at time t; 

Ic is the inclusive value for the connecting routes of the O-D airport pair p at 

time /; Vpt = ln( ^ e ^ ) ; 
jeRc(p(r)t) 
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L, is the inclusive value of the air routes at time t: 
'at 

jeRd(m(r)i)JzP*' (j) lsPc(m(r)t) 

Xc, Xa, and Xm are scale parameters associated with the connecting route nests, 

the air route nest, and the top (air vs. non-air) nest, respectively; although 

these simplified parameters are not changed over time or over markets, 

they can be easily modified if needed; 

Rc(p(r)t) represents all connecting routes of the O-D airport pair p served by 

route r at time t\ 

Pc(m(r)t) represents all O-D airport pairs with connecting routes in the market 

served by route r at time t; 

Rd(m(r)t) represents all direct routes in the market served by route r at time 

t\ 

Pd(j) is the O-D airport pair of direct route j . 

To be consistent with utility-maximization for all possible values of the explanatory 

variables, the scale parameters of the NL3A model have to be in the following ranges: 

X X X X 
0 < —— < 1 and 0 < —- < 1, where —- and —- are the coefficients of inclusive values, 

K K K K 
lal and / , respectively. This condition is equivalent to the expression 

XX X 
0 < Xc < Xa < Xm. If the hypotheses —- = —- = 1 and — = 1 cannot be rejected, the 

K K K 
NL3A model reduces to the MNL model and the NL2 model, respectively. 
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Three-Level Nested Logit—B 

Another possible extension of the NL2 model is to consider the correlations of 

routes with the same O-D airport pair. This leads to the second three-level nested logit 

(NL3B, thereafter), of which the nesting structure is presented in Figure 3.4. The NL3B 

model implies proportional substitution across the routes of the same O-D airport pair 

and across the route groups—all routes of an O-D airport pair are considered as a group. 

A route is more likely to compete with another route of the same O-D airport pair than 

the routes of the other O-D airport pairs, and is least likely to be substituted by the 

non-air alternative. A characteristic change of the route O1H1D1, for instance, has larger 

impact on the route O1H2D1 than on the route O1H2D2 , and has lowest impact on the 

non-air alternative. 

NL3B 

Scale h 

Non-Air Scale k,. 

O-D Airport 

//K /fk"-
O, O, 0{ O, O, Oi O, O, Oo 0 0 Oo 0 0 

D, H, H2 HhD2 H, H2 Hh Dn H, H2 Hh 
D, D, D, D2 D2 D2 Dn Dn Dn 

Figure 3.4 Nesting Structure: Three-Level Nested Logit-—B 
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The NL3B model is decomposed into three MNL models by Equation (3.4). Similar 

to the NL2 and the NL3A models, the total market share of the air routes, MSa,, is 

modeled by the binary logit model. The second MNL model captures the conditional 

market shares of route groups: the competitions among the O-D airport pairs of a market, 

given that the air routes are chosen. The conditional market shares of routes, including 

direct and connecting routes, within an O-D airport pair are considered in the third MNL 

model. The three MNL models are linked by the inclusive values Iat and / . 

MSr,=MSal-MSpt]M.MSrllpt (3.4) 

where: 

MSrl, t represents the conditional market share of route r at time t given that 

e
Yr,np 

the routes of the O-D airport pair p are chosen; MSrt, t - — y u ; 
r\p \ e JI p 

jeR(p(r)t) 

MSpl,al represents the conditional market share of the routes of the O-D airport 

pair p given that the air routes of the market are chosen; 

{Zpl+\pIpl)IAa 

MS 
p<\a< ve

(Z''+V«)/'l« ' 
leP(m(r)t) 

MSal is the marginal market share of the air routes at time t; 

MS„ = 
\ + e (WM+KK,VK 
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/ is the inclusive value of the O-D airport pair p at time t ; 

jeR(p(r)t) 

Iat is the inclusive value of the air routes at time t; Iat=\n{ ^ e "+ ' '" ") 

X , Xa, and Xm are scale parameters associated with the O-D airport pair nests, 

the air route nest, and the top (air vs. non-air) nest, respectively; although 

these simplified parameters are not changed over time or over markets, 

they can be easily modified if needed; 

R(p{r)t) represents all routes of the O-D airport pair p served by route r at 

time t\ 

P(m(r)t) represents all O-D airport pairs in the market served by route r at 

time t. 

The NL3B model is consistent with utility-maximization for all possible values of 

X X X /I 
the explanatory variables if 0 < —- < 1 and 0 < —- < 1, where —— and — are the 

K K K K 

coefficients of inclusive values, Iat and / , respectively. Note that either X , Xa, or 

Xm can be normalized to one. In the case of normalizing Xm=l, the condition becomes 

0<Xp<Xa<Xm=\.lfXp is chosen to be one, the condition is 1 = Xp < Xa < Xm. In 

addition, the NL3B model reduces to the MNL model and the NL2 model, if the 

X X A 
hypotheses s- = -£--\ ancj __£. = \ cannot be rejected, respectively. 

K K K 
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Four-Level Nested Logit 

Combining the NL3A and the NL3B models gives the four-level nested logit (NL4, 

thereafter), which considers the correlations among the air routes, the O-D airport pairs, 

and the connecting routes of an O-D airport pairs. The nesting structure of the NL4 model 

is shown in Figure 3.5. This model implies proportional substitution across the 

connecting routes of the same O-D airport pair. A connecting route is expected to 

substitute, in order from high to low possibilities, for the connecting routes of the same 

O-D airport pair, the direct route of the same O-D airport pair, the routes of the other O-D 

airport pairs, and the non-air alternative. For example, the impact of a change in the 

characteristics of the route O1H1D1 is expected to be successively less on the route 

OiH2Di, the direct route O1D1, the route O1H2D2, and the non-air alternative. 
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NL4 

Non-Air 

Scale k. 

O-D Airport 

0, Oi O, O, 0 , 0 , 0 0 0 0 0 0 

H, H2 Hh H, H2 Hh H, H2 Hh 

D, D, D, D2 D2 D2 Dn Dn Dn 

Figure 3.5 Nesting Structure: Four-Level Nested Logit 

The NL4 model can be decomposed into MNL models by Equation (3.5). The total 

market share of the air routes, MSat, is given by the first binary logit model. The second 

MNL model deals with the conditional market shares, given that the air routes are chosen, 

of O-D airport pairs—all routes of an O-D airport pair are grouped as a whole. Given that 

an O-D airport pair is chosen, the conditional market shares of the direct route and the 

group of connecting routes are determined by the third MNL (a binary logit) model. The 

fourth MNL model captures the conditional market shares of connecting routes of an O-D 

airport pair. The four MNL models are linked by the inclusive values Iat, Ipt, and Ict. 
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MSrt = MSat • MSptlal • MSctlpt • MSr¥ • (1 - dr) 

+ MSal.MSpllal.MSrtlpl.dr 

where: 

MSrl<t represents the conditional market share of route r at time t given that 

the connecting routes of the O-D airport pair are chosen; 

YC„IXC 

MS, --

2>'; 
jeRc(p(r)t) 

MScApl represents the conditional market share of the connecting routes of the 

O-D airport pair p at time t given that the routes of the O-D airport pair 

Xcla Ikp 

p are chosen; MS ,, , = —3— , 
c,\p' y»i^„ V w - ^ o e p +e p 

MSrl,pt represents the conditional market share of route r at time / given that 

the routes of the O-D airport pair p are chosen; 

Yin„ 

M S , =• 

MSpl,at represents the conditional market share of the routes of the O-D airport 

pair p given that the air routes of the market are chosen; 

MS 
pt\at y< (z„+v,V4 ' 

MSal is the marginal market share of the air routes at time t; 

MS„ = 
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Ict is the inclusive value for the connecting routes of an O-D airport pair at time 

t; Ict=\n{ ] > > ^ ) ; 
jeR'(p(r)t) 

11 is the inclusive value of the O-D airport pair p at time t; 

Ipt=\n(e"IXp +eK'a'K); 

Iat is the inclusive value of the air routes at time t\ 7a /=ln( ^ e "+ pl"} " ) ; 
leP(m(r)l) 

Ac, Xp, Xa, and Xm are scale parameters associated with the connecting route 

nests, the O-D airport pair nests, the air route nest, and the top (air vs. 

non-air) nest, respectively; although these simplified parameters are not 

changed over time or over markets, they can be easily modified if needed; 

Rc(p(r)t) represents all connecting routes of the O-D airport pair p served by 

route r at time t; 

P{m(r)t) represents all O-D airport pairs in the market served by route r at 

time /. 

To be consistent with utility-maximization for all possible values of the explanatory 

variables, the scale parameters of the NL4 model must be in the following ranges: 

0 < — - < 1 , 0<—L<land 0 < - ^ < l , where — , -^^-and — are the coefficients of 
K K hP K K kp 

inclusive values, Iat , Ipt , and Ict , respectively. If the scale parameter Xm is 

normalized to one, the condition becomes 0 < Xc < X < Xa < Xm = 1. If the hypotheses 
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^ = _JL = ^ = 1} _ii = ^L = 1 ) -e . = i , and - ^ = 1 cannot be rejected, the NL4 
K K ^p K ^P K ^P 

model reduces to the MNL model, the NL2 model, the NL3A model, and the NL3B 

model, respectively. 

3.1.2 Causal Factors 

According to the proposed demand model, Equation (2.1), the route demand is 

equal to the product of the market saturated demand and the route market share, which 

are determined by functions of socioeconomic and supply characteristic vectors. Causal 

factors are specified for these vectors. In summary, this research (1) uses population for 

the city-pair socioeconomic and geographic characteristic vector, Dm(r)l, to estimate the 

market saturated demand; (2) specifies income for the route-specific socioeconomic 

and geographic characteristic vector, Drl, and assumes that Drl = Dm(r)l, where Dm(r)l 

is a socioeconomic and geographic characteristic vector of the city-pair served by the 

route; (3) considers air fare, scheduled flight time, flight frequency, on-time performance, 

market distance, routing type, and fixed effects for the route supply characteristic vectors, 

Srt and S_rt. 

As mentioned in chapter 2, the vector Srl can be decomposed into three parts: 

Srl = {S'rt,Sa(r)l,Sg(r)l}, where Sa(r)t and Sg(r)l are characteristic vectors of the airports, 

and the segment (s) served by route r at time t, respectively; S'rt is a pure route 

characteristic vector of route r at time t. Correspondingly, each considered causal 

factor belongs to one of the three vectors: air fare, scheduled flight time, and routing type 
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are elements of S'rt; airport on-time performance and flight frequency are specified for 

Sa(r)l and Sg(r)t, respectively. Details for each causal factor are discussed below. 

Population 

As discussed in chapter 2, this research assumes a maximum number of potential 

trips in a market based on population. Simply put, we assume that the more people that 

could travel in a city-pair market, the more people that will travel. The potential number 

of trips for a city-pair m at time t is specified as a function of the city-pair population, 

Equation (3.6). 

Tm(r)t = « * Mm(r), = « * Population M(r), (3.6) 

where: 

a is the proportionality factor; 

Mm(r)l is the observable socioeconomic variable chosen for reflecting the 

potential total traffic; 

Population m(r)t is the geometric mean of populations of the city-pair m served 

by route r at time t; for each city, the population of the metropolitan 

area served by an airport or an airport system is used. 

20 Populations of metropolitan statistical areas (MSAs), micropolitan statistical areas, 
metropolitan divisions, and combined statistical areas (CSAs) are used to calculate the 
population of the metropolitan area. Refer to Bureau of Economic Analysis (2006) for 
more information. 
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The proportionality factor a is set to be 10 when quarter is chosen for the time 

frame, i.e. every unit of population may make 10 trips per quarter. Note that 10 is a large 

number of potential trips for intercity travel. The real number of air trips is much smaller 

than the potential, since air travel costs are high. Sensitivity tests for this setting are 

performed to check the robustness of the model parameters. 

Although population is not explicitly specified in the market share function, it still 

helps to explain—through its impact on the calculation of market shares—the market 

share variation between the air routes and the non-air alternative, both across markets and 

over time. Refer to Appendix A for details. 

Income 

Income is used to capture the economic activities that generate air travel demand 

and potential travelers' purchasing power. Both economic activity and purchasing power 

are expected to have positive impacts on air travel demand. Thus, higher income level is 

expected to generate more air trips. The geometric mean of incomes of two cities is 

used as an explanatory variable for the city-pair demand. For each city, the income 

variable is measured by the per capita personal income (in constant dollars, based on the 

4l quarter of 2004) of the metropolitan area served by an airport or an airport system. 

Even though the income variable is specified in the market share function, its role 

is similar to those income variables in the traditional demand generation models. Because 

21 Employing the geometric mean implies that market demand of a city-pair is not 
affected by income of one city if the other city has zero income. 
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the income level is the same for all air routes of a market, the income variable does not 

affect the relative market shares of different air routes. It, however, explicitly explains the 

market share variation between the air routes and the non-air alternative, both across 

markets and over time. 

Price 

According to economic theory, price plays a major role in demand. This is also true 

in air travel demand models, although some studies omitted this factor due to data 

inavailability or econometric issues, such as the possibility of endogeneity bias. From a 

traveler's perspective, the full price (total monetary costs) of an air alternative may 

include the air fare and the access costs—for instance, paying for the transit ticket or 

parking fees—for the alternative. Since air fare is usually the dominant component of 

these costs, especially for long-haul markets, it is used to capture the effect of price on air 

route demand. This variable is measured by the average fare of a route in 2004 (the 4th 

quarter) constant dollars. 

As mentioned in section 2.1.3, the air fare variable may be endogenous, because of 

supply and demand simultaneity and/or omitted variables. As a result, the coefficients 

estimated by ordinary least squares (OLS) method may be biased. In air travel demand 

models, the fare coefficient is more likely biased towards zero22. Thus, the inferred fare 

22 Because airlines may set fares based on some demand side variables—such as traffic 
flow, demand estimations ignoring simultaneity of supply and demand systems may 
give results that travelers seem to prefer higher air fares. In addition, higher fares may 
be due to better services. If a model does not take an important service characteristic 
into account, the estimated fare coefficient may be affected by the fact that passengers 
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elasticities and the value-of-time may be underestimated and overestimated, respectively. 

This research applies the instrumental variables (IV) estimation, in which a cost side 

variable23 is chosen as the instrument for air fare, to solve the endogeneity problem. 

Although the access costs may also affect travelers' decisions on routes, 

particularly for the airport choice in multiple airport systems, this research does not 

explicitly specify the access cost variables in the model mainly due to the data 

availability. Totally omitting the access cost variables may affect the estimated 

coefficients of other specified variables if (1) the impacts of access cost on route choice is 

substantial, and (2) the omitted and specified variables are correlated. For example, a 

route starting from an airport closer to a city center may have higher air fare than a route 

starting from an airport far from the city center, all other factors being equal. If this is the 

case, air fare is negatively correlated with access costs. Since access costs are expected to 

have negative impacts on demand, the estimated coefficient of air fare is expected to be 
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biased towards zero, if the model excludes access cost. In this research, the effects of 

access costs are implicitly captured by the fixed effect dummy variables, such as time and 

(origin and destination) airport dummy variables. In addition, applying the IV to air fare 

should eliminate the impact on the fare coefficient from omitting access cost variables. 

prefer better services (measured by the characteristic). Therefore, both simultaneity 
and omitted variables may lead the estimated coefficients that are biased upward. 

More specifically, the cost variable is defined as the product of the route distance and 
unit jet fuel cost. See section 3.3 Model Estimation for more details. 

Refer to Wooldridge (2003) or other econometrics textbooks for general expressions. 
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Scheduled Flight Time 

In addition to money, potential travelers also spend time on travel. Total travel time 

of a trip—from the origin to the destination—should be used to capture the time effect, 

which is expected to be negative: on average, travelers would prefer shorter travel time. 

The total travel time is mainly composed of access time, scheduled flight time, schedule 

delay, connecting time (if any), and flight delay. Figure 3.6 describes these time 

components, except for access time. The deterministic and stochastic parts of the total 

travel time are shown in solid and dashed lines, respectively. Note that arrival delay at a 

connecting airport, if huge enough, may cause missed connections and schedule changes 

for travelers. In addition, because these time components may have different marginal 

effects25, analyzing the time effect by its components allows for more flexibility. 

Scheduled flight time is discussed in this sub-section, and other time components are 

analyzed in the following sub-sections. 

For example, one hour of arrival delay may be much worse than one hour of scheduled 
flight time. A passenger may miss her or his connecting flight due to the arrival delay, 
while he or she can plan in advance for the longer scheduled flight time. 
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Figure 3.6 Decomposition of Total Travel Time (except for Ground Access Time) 

Scheduled flight time can be considered as the deterministic line-haul travel time 

between cities. It usually occupies a large proportion of the total travel time and makes 

air alternatives superior to other modes, such as auto and rail. Among air alternatives in a 

market, a route with longer scheduled flight time is expected to be less competitive, other 

factors being equal. In the empirical analysis, the scheduled flight time variable for an air 

route is defined as the sum of gate-to-gate scheduled time of flight segments of the route. 

The gate-to-gate scheduled time of a segment is determined by averaging over scheduled 

flights on the segment. 
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Airlines may add buffer time into schedules to improve on-time performance . 

This may affect the estimated effects of scheduled flight time and on-time performance. 

The scheduled flight time that includes buffer time is not only associated with route 

distance but also with delay which is measured against schedule. The estimated results of 

scheduled flight time and delay need to be explained carefully. For example, when 

evaluating delay impacts, a researcher should note that the estimates based only on delay 

variables may be inaccurate, because parts of the delay impacts are absorbed by 

scheduled flight time. The bottom line is that scheduled flight time and delay capture the 

effect of buffer time, although they should be explained with caution. 

Flight Frequency 

The greater the number of flights, the more convenient traveling between two cities 

is. From the viewpoint of travel time, higher flight frequency generally causes shorter 

schedule delay, which refers to the time difference between desired and actual schedule 

arrival/ departure times, and thus shorter planed total travel time. In addition, higher 

frequency is more likely to keep a traveler close to his or her original schedule when 

unexpected events, such as flight cancellations and delays, happen. For instance, a 

traveler missing a flight on a high-frequency segment may only wait for one hour for 

If the marginal effect of delay is greater than that of scheduled flight time, shifting the 
same unit of time (e.g. 10 minutes) from delay to scheduled flight time makes an air 
route more attractive. However, adding buffer time may cost more than it may gain, 
since it reduces aircraft utilization. The trade-off between on-time performance and 
aircraft utilization limits the length of buffer time. 
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another flight, while the same situation on a low-frequency segment may cost him or her 

one night. 

Flight frequency may affect a potential traveler's decision by changing his or her 

choice set, especially when flight searching costs are high for the traveler. Higher 

frequency routes are more likely to be included in travelers' choice sets, and thus to be 

chosen. For example, when a potential traveler books his or her flight through a travel 

agent, the agent may only provides a few number of alternatives to the potential traveler, 

based on the potential traveler's desired departure or arrival time. Low frequency routes 

may not be suggested to the potential traveler because they are a little out of the desired 

time window, even though they may have better attributes such as lower fares. Another 
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example is that a potential traveler may first call an airline that provides more—at least 

he or she believes so—flights in the O-D market. The potential traveler may pick one of 

the offered alternatives from this airline if he or she feels it is satisfactory. In both cases, 

the potential travelers may not search for other travel agents or airlines, because of flight 

search costs. 

As suggested by Hansen (1990), flight frequency is taken in logarithmic form for 

two reasons. First, marginal effects of flight frequency on route utilities are expected to 

be diminishing with increasing number of flights. Second, a route alternative can be 

considered as an aggregation of detailed alternatives, and frequency is a measure of the 

77 

This is an example of airline choice, rather than route choice. However, in practice, 
choosing a route may be equivalent to choosing an airline, because the connecting 
airport of a route is dominated by a specific airline. 
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size of the route alternative. The logarithmic form is the most suitable for a 

characteristic that captures the size of an aggregated alternative. 

Since flight frequency is a segment characteristic, a route utility function may 

include several frequency variables. This research specifies three frequency variables— 

one for direct routes and two29 for connecting routes, and expects their marginal effects 

are different. In particular, this research differentiates the frequency effects for 

connecting routes by taking maximal and minimal numbers of flights on two segments. 

The hypothesis is that the minimum frequency is more critical to the connecting service, 

and thus a given fractional flight frequency increase on the segment with lower frequency 

should increase service attractiveness more than an equivalent change on the segment 

with higher frequency. 

Note that it is possible that observed flight frequency is endogenous, because of 

supply and demand simultaneity—airlines would schedule more flights if they think there 

will be high demand on a segment; potential travelers prefer high frequency routes as 

described above. As a result, the coefficients estimated by OLS method may be biased. 

However, flight frequency is a segment characteristic and each segment may serve many 

routes and markets; that is, flight frequency is not solely determined by specific route 

traffic. Therefore, the endogeneity bias caused by frequency may not be severe since the 

Refer to Ben-Akiva and Lerman (1985) for more details. 

This research discards routes with three or more segments, which carry about 5 
percent of passengers, to simplify the analysis. Thus, every connecting route has two 
segments. 
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proposed model is a route demand model. In addition, the possibility of bias caused by 

the frequency endogeneity is less than that resulting from endogeneity of air fare, which 

is a route specific characteristic. This research, hence, only focuses on the remedy for 

bias caused by the air fare variable. 

On-Time Performance 

While scheduled flight time and schedule delay (represented by frequency) capture 

deterministic parts of total travel time, on-time performance is stochastic in nature. 

Whereas travelers accept most characteristics of the service (e.g. fare and scheduled 

travel time) before their trips, on-time performance is realized during the trip, and thus 

becomes an important determinant of travelers' ultimate satisfaction30. Better on-time 

performance may thereby attract more traffic to the route in the future. 

There are many ways to measure on-time performance of a route. Percentage of 

on-time (or delayed) flights and average delay per flight are two main categories of these 

metrics. The former metric is determined by setting up a threshold, such as 15 minutes: if 

a flight arrival or departure delay against schedule is greater than the threshold, it is 

counted as a delayed flight. The later metric is equal to the total delay time31 divided by 

For example, Ross and Swain (2007) argued that "industry surveys consistently 
identify departure punctuality as a key determinant of consumer satisfaction, 
especially on shorter flights." 

One may calculate the total delay time by summing the time differences between 
actual and schedule time for all flights, or for all delayed flights, defined by a delay 
threshold. This research chooses the first approach. In addition, this research also 
calculates average positive and negative delays by separating early and late flights. 
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the total number of flights. As shown in Figure 3.6, both metrics can be calculated for 

different types of operations and components: (1) by flight arrival or departure, (2) by 

flight segment, and (3) by airport. Table 3.1 summarizes these combinations. Note that 

this research does not consider arrival metrics for origin airports and departure metrics 

for destination airports, because these metrics do not directly reflect on-time performance 

of a route. 

Table 3.1 On-Time Performance Metrics of a Route 

Segment 

Airport 

Direct 
Segment 1 
Segment 2 

Origin 
Connecting 
Destination 

Percentage of on-time 
(or delayed) flights 

Departure 

NC 

Arrival 

NC 

Average delay per flight 

Departure Arrival 

NC 

NC 

Notes: (1) "NC" represents the metric is not considered in this research. (2) The metrics 

finally used in the empirical study are marked. 

This research uses "average delay per flight" to capture on-time performance 

effects because it gives more information about on-time performance of routes. While 

two routes have the same percentages of on-time flights (e.g. 80%), their average delay 

levels may be significantly different. Two flights with 20 and 40 minute delays, for 

example, are counted as identical delayed flights in calculating the percentage of on-time 

flights. In addition, average delay by airport is specified in the model, although average 
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delay by segment better reflects on-time performance of a route. The main reason is that 

potential travelers, at least for the majority of them, are more likely to get on-time 

performance information of airports than that of segments. Therefore, potential 

travelers' route choices are more likely to be affected by airport on-time performance. A 

traveler, for example, may avoid connecting at an airport with high expected delay in 

certain seasons. 

There are "negative delay" cases, in which flights arrive or depart early. The 

research reported here investigates travelers' preference for negative delay. Thus, average 

positive and negative delays are calculated by separating early and late flights. The 

hypothesis is that negative delay should have smaller, if any, marginal effect on demand 

than positive delay, that is, one minute early is not as important as one minute late. For 

example, a traveler still has to wait for her scheduled connecting flight even though she 

arrives the connecting airport early. However, if she arrives late, she may miss her 

connecting flight. Figure 3.7 depicts this hypothesis graphically. Positive and negative 

delays bring disutility and utility, respectively. The slope, in absolute value, of positive 

delay is expected to be larger than that of negative delay (i.e.,| PPd |> | p\id I). 

Although delay statistics by airline, by airport, and even by flight number are all 
available in the United States, no delay statistics by segment are directly available for 
potential travelers. Even though potential travelers may find the percentage of on-time 
of a flight (not a segment) on the Internet when they book, the percentage cannot 
reflect the delay level of the flight because the same percentages of on-time flights 
may represent significantly different delay levels. 
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. Utility 

Delay 

Figure 3.7 Delay and Utility 

Since potential travelers do not know their flight delays when they choose their 

routes, they may consider expected flight delay as one of the service characteristics. This 

research uses flight delays of previous period(s) to capture the expectation. That is, a 

potential traveler may prefer a route because he or she knows (e.g. from their experiences 

or friends', or from the Internet) that the airports it includes have good records of on-time 

performance. More precisely, the hypothesis is that potential travelers make decisions 

based on recent—defined as one and four seasons (subscripted as t-1 and t-4, respectively) 

before the decision season (subscripted as t)—available information on on-time 

performance. Potential travelers may have impressions of how good or bad the 

alternatives are based on recent experience. The delay variable for one quarter before the 

decision quarter (t-1) is used to capture this expectation. In addition, the on-time 
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performance of aviation systems heavily depends on weather conditions, and thus follows 

seasonal patterns. The delay variable for four quarters before the decision quarter (t-4) is 

used to account for the seasonal effect. 

Routing Type 

The more connections required by a route, the lower its convenience. Thus, 

potential travelers usually prefer direct routes over connecting routes, all else equal. 

Although travelers' disutility may non-linearly increase with the number of connections, 

this research, since it considers only direct and one-connection routes, employs a dummy 

variable to capture connection utility. The specified dummy variable captures the fixed 

route effects which are not captured by other variables (e.g. fare, scheduled flight time, 

and delay). For instance, combined with connecting airport dummy variables, it captures 

connecting time. 

Market Distance 

Market distance may affect potential travelers in two ways: mode choice and 

propensity to travel. Since the model includes a non-air alternative, mode competition 

should be taken into account in order to estimate the total market share of air routes in a 

market. Potential travelers are more likely to choose air service in long-haul markets than 

in short-haul markets, as alternative modes—such as automobile and train—are not 

available or not competitive in long-haul markets. Considering mode competition effect 

only, the total market share of air routes is expected to increase with market distance. 

This effect diminishes at larger distances as alternative modes become uncompetitive. 

70 



www.manaraa.com

That is, the market distance effect due to mode competition may become essentially 

constant once as market distance reaches a certain value. 

While mode competition concerns the air transport share of the travel market, 

distance also effects the overall size of that market. As suggested by the literature on 

transportation geography, interactions between distant cities are likely to be fewer. Thus, 

propensity to travel induced from such interactions is expected to decrease as distance 

increases. Travel costs, including monetary and time costs, may be the main reasons for 

this tendency, but factors other than costs are also at play. 

As discussed above the effects of distance on mode competition and propensity to 

travel may offset each other. The net effect of market distance, thus, may depend on data 

and model specification. For example, a study with more long-haul markets in the sample 

may find a negative distance effect on demand if a linear relation is specified. Including 

fare and travel time as explanatory variables affects the distance coefficient estimate 

because of multicollinearity between distance and these variables. 

In the air travel demand literature, the majority of studies suggest that distance 

prevents people from traveling, mainly due to travel costs increasing with distance. For 

instance, De Vany and Garges (1972) find that market distance is negatively correlated 

with city-pair air trips. Relatively few studies take mode competition into account when 

they investigate distance effects. However, some studies implicitly treat this issue by 

estimating different models for different market distance ranges. Corsi, Dresner and 
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Windle (1997) argue that the sign of distance coefficient is indeterminate33. Their 

estimate shows a positive correlation between market distance and city-pair air traffic, 

implying that mode competition is the dominant effect. Due to their specification the 

relationship, however, is fixed across city-pairs—regardless of service attributes and 

distance ranges. 

In this research, the net effect of market distance is expected to be positive—it is 

more likely dominated by mode competition. The influence of propensity to travel is 

weaker since travel cost variables, such as fare and scheduled flight time, are also 

included in the model. By the same token, the effect is likely to be concave in distance, 

and perhaps decreasing at long distance. As visualized in Figure 3.8, while the marginal 

effect of mode competition in shorter-haul markets is strong, it becomes negligible in 

longer-haul markets. The influence of propensity to travel may thus prevail in longer-haul 

markets. 

Their justifications are as follows. "On one hand, one would expect more travel 
between cities that are relatively close (in distance) to each other; that is distance to be 
negatively correlated with passenger traffic. On the other hand, closer destinations 
have the greatest competition from automobiles and trains so that it might be that air 
passenger traffic increases with route distance." 
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Figure 3.8 Components of Market Distance Effect 

This research specifies several market distance related variables to capture the 

concave effect. In addition, interaction terms of market distance and service variables can 

be used in order to allow markets with different service levels to have different distance 

effects. Like income, the market distance variable has the same values for all routes in a 

market. Thus distance affects demand generation—the market share of air routes versus 

the non-air alternative—but not the assignment of demand across air routes. 
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Other Factors 

In addition to the above causal factors, this research specifies several sets of 

dummy variables to capture unobserved fixed effects, such as specific airport and time 

period effects. The first set of dummy variables is for connecting (hub) airports, since 

each connecting airport may have specific conditions that affect potential travelers' 

connecting choices that have not been captured by other explanatory variables. For 

example, although standard connecting times of hubs are not specified in the model, these 

dummy variables could capture such effects if they do not vary much over the time span 

of the sample. Twenty-nine dummy variables are used—one for each of the 30 

benchmark airports , except for Tampa International Airport (TPA) which is used as the 

benchmark airport. 

Another set of dummy variables captures fixed effects of origin and destination 

airports. They are only specified for airports in multiple airport systems because potential 

travelers do not have a chance to choose among terminal airports in single airport systems. 

The functions of the origin and destination airport dummy variables are similar to dummy 

variables for connecting airports, but represent different effects. This set of dummy 

variables may capture, for instance, differences in airport accessibility. 

The third set of dummy variables captures seasonal and yearly fixed effects. Three 

and eight dummy variables are used for quarter and year, respectively. People may be 

4 To simplify the empirical work, this research only includes direct routes and routes 
connecting at one of the 30 benchmark airports in the sample. Refer to section 3.2 for 
details. 
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more (or less) likely to travel in certain seasons or years, for reasons not captured by 

socioeconomic variables in our model. For example, after 9/11, people curtailed air travel 

because of security concerns as well as the increased hassle of more stringent screening. 

Although this research does not explicitly specify dummy variables for market 

fixed effects, the used estimation method (difference-in-differences) implicitly takes 

these effects into account by segregating these variables from the utility functions. In our 

estimation , differences of explanatory variables are actually used as regressors to 

explain the market share difference between two routes. Since these routes serve the same 

market, they have no difference in market fixed effect. Therefore, dummy variables for 

market fixed effects are eliminated from the utility functions. 

3.2 Data 

To estimate the model, this research compiles a panel data set which includes 

variables for major U.S. domestic routes over 40 quarters—all quarters between year 

1995 and 2004. The raw data is from five sources: (1) DOT's Airline Origin and 

Destination Survey (DB1B); (2) DOT's T-100; (3) FAA's Airline Service Quality 

Performance System (ASQP); (4) Bureau of Economic Analysis's Regional Economic 

Information System; and (5) Air Transport Association's Fuel Cost and Consumption 

Report. In order to simplify the empirical work and/or get reliable data, the data is filtered 

by several rules. In addition, it is necessary to associate airports with metropolitan 

regions since the model predicts travel between regions rather than specific airports. 

Refer to section 3.3 for more information. 
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Data Sources 

Information about air passenger itineraries—including fares and routes (origin, 

connecting, and destination airports)—is originally from U.S. DOT'S Airline Origin and 

Destination Survey (DB1B), which is a 10% sample of airline tickets from reporting 

carriers36. Due to data reliability problems, this research does not use raw data from 

DB1B. Instead, the used data is extracted from Hub, a commercial product, which cleans 

the raw data by comparing different data sources (Data Base Products, 2004a; 2005a). 

After filtering (refer to the "Data Filters" sub-section below), average fare and number of 

passengers for each route are calculated. In addition, market distances are also provided 

by Hub. 

Flight frequency data is originally from U.S. DOT's T-100 database, which 

provides U.S. domestic non-stop segment information. This research extracts the data 

from Onboard Domestic, also a commercial product of Data Base Products (2004b and 

2005b). With flight frequency for all segments in the system, frequency variables for 

routes can be determined. 

Scheduled flight time and on-time performance variables, including all on-time 

performance metrics listed in Table 3.1, are calculated from FAA's Airline Service 

Quality Performance (ASQP) database, which provides actual and scheduled time by 

According to Data Base Products (2007), these carriers are "all U.S. certificated route 
air carriers, except for a) helicopter carriers, b) intra-Alaska carriers, and c) domestic 
carriers who have been granted waivers because they operate only small aircraft with 
60 or fewer seats." 
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flight by gate departure and gate arrival from reporting carriers . After filtering, 

scheduled flight time for each segment in each quarter is computed by averaging 

scheduled flight time of all flights on the segment in that quarter. Scheduled flight time 

for all routes, then, can be determined. For each airport, average positive and negative 

arrival delays are calculated by differentiating flights that arrive before and after their 

scheduled time. 

Income and population by metropolitan38 information is downloaded from the 

Regional Economic Information System, U.S. Bureau of Economic Analysis (2006). 

Each origin or destination city is linked to one metropolitan area. Then, the geometric 

mean of income or population for each city-pair can be determined. Note that income and 

population data is not available for some quarters of a year. In such cases, linear 

interpolation is used to estimate these variables. 

Unit jet fuel cost of U.S. domestic operations is calculated from Air Transport 

Association's Fuel Cost and Consumption Report (2005). Monthly fuel cost and 

consumption are summed into quarterly total fuel cost and consumption. Then, for each 

According to Federal Aviation Administration (2007a), "The Airline Service Quality 
Performance System (ASQP) contains data provided by the airlines by flight for 
airlines that carry at least 1% of all domestic passengers. The number of airlines 
providing data has varied from 10 to 20." 

The metropolitan here includes all metropolitan areas: metropolitan statistical areas 
(MSAs), micropolitan statistical areas, metropolitan divisions, and combined statistical 
areas (CSAs). Refer to Bureau of Economic Analysis (2006) for more information. 

39 The unit cost (cents per gallon, in 2004 dollars) is used to calculate the instrumental 
variable, which is defined as the product of the route distance and unit jet fuel cost, for 
air fare. 
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quarter, the unit jet fuel cost is equal to the total fuel cost divided by the total fuel 

consumption. 

Data Filters 

The data used for estimating the model is filtered, in order to simplify the empirical 

work and ensure reliable data. Data filters are as follows. 

• This research uses US domestic itineraries with non-zero fares and with one or two 

coupons. These itineraries account for about 95% of all US domestic itineraries. 

Itineraries served exclusively by commuter carriers are discarded since commuter 

carriers did not completely report their activities to DB1B. 

• Only itineraries between top 100 origin and destination airports are included in the 

sample. The ranking is based on fourth quarter 2004 passenger traffic, excluding 

connections. As shown in Figure 3.9, the top 100 airports account for about 95% of 

total airport traffic, while maintaining a reasonable computational burden. 
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Figure 3.9 Cumulative Passenger Shares of Airports 

• For connecting routes, only 30 benchmark airports40 are considered as the connecting 

airports. Routes connecting at other airports are eliminated. The elimination limits the 

Refer to Federal Aviation Administration (2001). The Federal Aviation Administration 
developed capacity benchmarks for 31 of the busiest airports in 2001. Since this 
research only considers the trips in the continental United States, the Honolulu 
International airport (HNL) is removed from the connecting airport list. Thus, 30 
benchmark airports are used in the empirical study. They are Atlanta Hartsfield 
International Airport (ATL), Logan International Airport (BOS), Baltimore-
Washington International Airport (BWI), Charlotte Douglas International Airport 
(CLT), Cincinnati- Northern Kentucky International Airport (CVG), Ronald Reagan 
National Airport (DCA), Denver International Airport (DEN), Dallas-Ft. Worth 
International Airport (DFW), Detroit Metro-Airport (DTW), Newark International 
Airport (EWR), Washington Dulles International Airport (IAD), George Bush 
Intercontinental Airport (IAH), John F. Kennedy International Airport (JFK), 

1 

S 
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number of routes of an O-D airport pair to 31 (one direct route and 30 connecting 

routes), which makes the model more tractable with little lose of generality, since the 

vast majority of connections occur at the 30 benchmark airports. 

• Some routes are discarded because of their unreasonable average yields or low 

frequency. This research picks routes with average yields equal or greater than four 

cents per mile.41 A minimum of 60 flights per quarter is used to define a normal 

scheduled service. Segments and routes with flight frequency less than 60 flights per 

quarter are not included in the sample. 

• When this research summarizes flight frequency variables from T100 database, flights 

served by small aircrafts (fewer than 60 seats) are not incorporated because of data 

availability and consistency issues. Prior to October 2002, the T-100 database only 

includes the carriers that operate at least one aircraft with more than 60 seats. The data 

before the fourth quarter of 2002 for aircraft with fewer than 60 seats are not 

representative and thus they are not used. Although all carriers report to T-100 

McCarran International Airport (LAS), Los Angeles International Airport (LAX), 
LaGuardia Airport (LGA), Orlando International Airport (MCO), Memphis 
International Airport (MEM), Miami International Airport (MIA), Minneapolis-St. 
Paul International Airport (MSP), Chicago O'Hare International Airport (ORD), 
Philadelphia International Airport (PHL), Phoenix International Airport (PHX), 
Pittsburgh International Airport (PIT), San Diego International Airport (SAN), 
Seattle-Tacoma International Airport (SEA), San Francisco International Airport 
(SFO), Salt Lake City International Airport (SLC), Lambert-St. Louis International 
Airport (STL), and Tampa International Airport ( TPA). 

About 0.8% of routes are discarded by this rule. 

80 



www.manaraa.com

database after that quarter, this research still removes those flights to keep the data 

consistent over time. 

• While calculating on-time performance from ASQP database, some flights are not 

included because their records are considered to be outliers. Flights with airborne time 

shorter than 15 minutes or with arrival delay longer than six hours are discarded. In 

addition, for each included flight, the absolute difference between actual and scheduled 

airborne time should not be greater than three hours. Additionally, some routes are 

automatically removed during model estimation if required delay variables values are 

unavailable. 

Multiple Airport Systems 

While some guidelines exist in the literature, there is no absolute definition of a 

multiple airport system (MAS) because each study has a different goal. In order to 

implement the model, this research follows the definition of a MAS proposed by Hansen 

and Weidner (1995). They defined a MAS using two criteria:42 airports operating in a 

metropolitan area and existing competition for local passengers. However, some airports 

More specifically, Hansen and Weidner (1995) defined "a MAS as consisting of two 
or more airports with scheduled passenger enplanements, and which satisfy both of the 
following criteria: (1) Each airport is included in the same community by the FAA or 
within 30 miles of the primary airport of an FAA-designated large hub community, or 
each airport is in the same MSA (Metropolitan Statistical Area) or CMSA 
(Consolidated Metropolitan Statistical Area); (2) The Herfindahl concentration index 
for airports is less than 0.95." 
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are not in the sample due to their low traffic. This affects the definition of MASs used in 

this research: some MASs involve fewer airports and some MASs become single airport 

systems. The MASs in this research are listed in Table 3.2. 

Table 3.2 Multiple Airport Systems 

Area 

Chicago, IL 

New York City, NY 

Los Angeles, CA 

Dallas/Ft. Worth, TX 

San Francisco, CA 

Washington, D.C. 

Miami, FL 

Houston, TX 

Norfolk, VA 

Airport 

O'Hare International 
Chicago Midway 
Newark 
La Guardia 
John F. Kennedy International 
Islip/Macarthur 
Los Angeles International 
Ontario/ San Bernadino/ Riverside 
Orange County/ John Wayne 
Hollywood-Burbank 
Long Beach 
Indio/ Palm Springs 
Dallas/ Ft. Worth International 
Love Field 
San Francisco International 
San Jose Municipal 
Metropolitan Oakland 
Washington National 
Dulles International 
Baltimore, MD 
Miami international 
Ft. Lauderdale-Hollywood International 
Houston International 
W. Hobby 
Norfolk International 
Newport News/ Patrick Henry International 

Airport 
Code 
ORD 
MDW 
EWR 
LGA 
JFK 
ISP 

LAX 
ONT 
SNA 
BUR 
LGB 
PSP 

DFW 
DAL 
SFO 
SJC 

OAK 
DCA 
IAD 
BWI 
MIA 
FLL 
IAH 
HOU 
ORF 
PHF 

Note: Modified from Hansen and Weidner (1995) 
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Summary Statistics 

After the data were filtered, 1,660,569 route-quarter observations—including 96 

thousand direct route-quarters and 1.56 million connecting route-quarters—remained to 

estimate the model. The sample statistics are shown in Table 3.3. 

The statistics for delay variables and the other variables are computed using data of 

different time periods—1995 to 2003 for delays and 1996 to 2004 for other variables. 

This is because lag delay variables are specified in the model. The lag delay variables for 

year 1995 (i.e., delay variables of year 1994) are unavailable, and observations for 1995 

thus are dropped. Delay variables of 2004 are not involved since they are not used in 

estimation. 

Market level variables, which are used to explain total demand of air routes, are 

identical for all air routes of a market. The statistics for these variables, therefore, are 

presented in terms of markets, instead of routes. The 1,660,569 route-quarter 

observations corresponded to 213,917 market-quarters, 76,629 routes, and 6,133 markets. 
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Table 3.3 Summary Statistics 

w • , , «, Standard . . . . Number of Variable Mean , . . Median , deviation observations 

Fare (hundreds of 2004 dollars) 2.183 1.314 1.870 1,660,569 
Frequency (flights per quarter) 

Frequency-Direct 
Max frequency of two segments-Connecting 
Min frequency of two segments-Connecting 

Scheduled flight time (minutes) 
Scheduled flight time 
Scheduled flight time-Direct 
Scheduled flight time-Connecting 

On-time performance (minutes per flight) 
-Connecting airport 

Positive hub arrival delay 
Negative hub arrival delay 

-Origin airport 
Positive origin departure delay 
Positive origin departure delay-Direct 
Positive origin departure delay-Connecting 
Negative origin departure delay 
Negative origin departure delay-Direct 
Negative origin departure delay-Connecting 

-Destination airport 
Positive destination arrival delay 
Positive destination arrival delay-Direct 
Positive destination arrival delay—Connecting 
Negative destination arrival delay 
Negative destination arrival delay-Direct 
Negative destination arrival delay-Connecting 

Instrumental variable (miles*2004 dollars per gallon) 
Route distance* fuel cost 

Route distance (hundreds of miles) 
Market level variable 

Population (thousands) 
Per capita personal income (thousands of 2004 dollars) 
Market distance (hundreds of miles) 

543.425 

1015.719 

451.112 

254.611 

135.531 

261.943 

10.981 

-4.967 

8.572 

9.014 

8.545 

-1.546 

-1.433 

-1.553 

11.189 

11.084 

11.195 

-4.280 

-4.461 

-4.268 

1210.653 

15.032 

1847.622 

32.150 

10.406 

497.601 

677.364 

328.265 

89.216 

69.487 

85.003 

3.303 

1.504 

2.803 

2.878 

2.797 

0.949 

0.859 

0.954 

3.151 

3.178 

3.150 

1.440 

1.501 

1.435 

366.000 

831.000 

355.000 

243.354 

119.625 

249.325 

10.458 

-4.827 

8.104 

8.533 

8.076 

-1.317 

-1.245 

-1.319 

10.736 

10.628 

10.742 

-4.043 

-4.225 

-4.029 

643.088 1096.869 

7.068 13.890 

1497.724 1409.884 

3.171 

6.257 

31.940 

8.990 

96,313 

1,564,256 

1,564,256 

1,660,569 

96,313 

1,564,256 

1,564,256 

1,564,256 

1,660,569 

96,313 

1,564,256 

1,660,569 

96,313 

1,564,256 

1,660,569 

96,313 

1,564,256 

1,660,569 

96,313 

1,564,256 

1,660,569 

1,660,569 

213,917 

213,917 

213,917 
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3.3 Model Estimation 

The basic strategy for estimating aggregate logit models is to transform market 

share functions and then estimate parameters by linear regression. For MNL models, the 

market share of route r at time t is given by Equation (2.3). The difference between 

natural logarithms of market shares of two alternatives (r and r') is described as 

Equation (3.7). Regressing the left hand side of the equation on differences of 

explanatory variables gives estimates of the parameters of interest (fik 's). 

\n(MSr,) - \n(MSr,t ) = flfik (xrtk - x,tk) + (£, - £,,) (3.7) 
k=\ 

Alternative-pairs need to be determined before running the regression. One simple 

way is to use the outside good (non-air) alternative of which utility is normalized to zero 

as the base alternative (r') for every route. As a result, Equation (3.7) can be simplified 

to Equation (3.8), by which there is no need to differentiate explanatory variables. 

Another way is to pick an alternative randomly as the base alternative (r') for other 

alternatives. 

HMSrt)-\n{MSJ = fjPkxrtk+$rt (3.8) 
k=\ 

For NL models, estimations become more complicated. One possible solution is to 

derive an equation, which is similar to Equation (3.8) but adding conditional market share 

term(s) and its (their) coefficient(s), for each nesting structure. For example, the proposed 

85 



www.manaraa.com

two-level nested logit (NL2) and three-level nested logit-B (NL3B) models can be 

estimated by Equation (3.9) and (3.10)43. 

\n(MSrl)-HMSJ^Y,/3kxrtk + (\ - ka) • \n(MSrl]at) + ^ (3. 9) 
4=1 

ln(MSrt)-ln(MS0() 

= t / W + (1 - K) • HMSpl[at) + (1 - Xp) • ln(MSrt, ,) + £, 
(3. 10) 

k=\ 

where: 

MSrAal represents the conditional market share of route r at time / given that 

the air routes of the market are chosen; 

MSpl,al represents the conditional market share of the routes of the O-D airport 

pair p given that the air routes of the market are chosen; 

MSrl\pt represents the conditional market share of route r at time t given that 

the routes of the O-D airport pair p are chosen; 

ka, and Xp are scale parameters associated with the air route nest and the O-D 

airport pair nests, respectively. 

43 Berry (1994) presented a formula for a two-level NL model. Following Berry's 

approach, this research derives these equations. Note that (a) notations used in these 

equations are consistent with equation (3.2) and (3.4); (b) utility of outside good 

(non-air) alternative is normalized to zero; (c) top level scale parameters (Am's) are 

normalized to 1. Refer to Appendix B for derivations of these equations. 
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While equations like (3.9) and (3.10) seem to provide a convenient way to estimate 

parameters, additional exogenous variables are required since the conditional market 

shares are endogenous. This research does not choose this approach because finding valid 

instrumental variables (IVs) becomes harder as the number of endogenous variables 

requiring them increases. For instance, in order to estimate the NL3B model by Equation 

(3.10), at least three (one for fare and two for conditional market shares) valid IVs are 

needed. Recall that the proposed NL models include a four-level NL model, which needs 

at least four valid IVs. 

This research sequentially estimates NL models by decomposing NL models into 

MNL models. More precisely, a nested logit model is estimated by nest and from bottom 

level to top level. Within a nest, an MNL model is estimated by applying Equation (3.7)44, 

in which the base alternative is randomly picked. Each level (except for the level 

involving the fare variable, in which the method of two stage least squares is used), is 

estimated by ordinary least squares (OLS)45 and then the inclusive value(s) of nest(s) at 

this level are calculated. Inclusive values of nests—which can be explained as the 

expected maximum utility that potential travelers receive from those nests—of a lower 

level are added into a higher level as an explanatory variable, of which the coefficient is 

the ratio of scale parameters (a lower level scale parameter divided by a higher level scale 

44 Since the models are estimated by applying Equation (3.7), all fixed effects with the 
same values for all alternatives in a nest are differentiated out. Thus, the estimates 
implicitly take these effects into account. For example, market fixed effects are 
considered, although dummy variables for markets are not explicitly specified. 

45 Standard errors of estimates that are robust to heteroskedasticity, serial correlation and 
market cluster effects are calculated for hypothesis tests. 
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parameter). Note that when estimating the NL models the utility of the non-air alternative 

is normalized to zero, and the scale parameters of the bottom nests are set to one. 

As discussed in chapter 2 and section 3.1.2, the air fare variable may be 

endogenous, and thus the coefficients estimated by OLS method may be biased. This 

research applies the instrumental variables method to solve the endogeneity problem. The 

instrumental variable for air fare is defined as the product of the route distance and unit 

jet fuel cost (in 2004 dollars per gallon). This variable captures the cost of offering the 

service, and thus affects—at least to a certain extent—the price of the service. It is 

expected to have no direct impact on market shares—the cost effect is accounted by air 

fare. More specifically, since this research applies Equation (3.7) to estimate the models, 

all variables used in estimation are differences between the variables of two alternatives. 

Therefore, the cost variable difference of two routes is used as the IV for the fare 

difference of the routes. 

3.4 Estimation Results 

Because lower-level nested logit and multinomial logit models are special cases of 

higher-level nested logit models, this research estimates proposed nesting structures from 

higher- level to lower-level nested logit models including multinomial logit models until 

a model that is consistent with utility maximization is found. The NL4 and NL3A models 

are not consistent with utility maximization. The NL3B model is found to be the 
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highest-level NL model that is consistent with utility maximization . Thus, the results of 

the NL3B model, including its experimental specifications and IV estimation, are 

presented. One advantage of the sequential estimation is that estimation for higher-levels 

is performed only after a preferred result for lower-level(s) is chosen. The detailed 

estimation results, therefore, are discussed by level and then are combined in the 

summary and discussions sub-section, in which the results of the MNL model with the 

same explanatory variables are also presented for comparison purpose. 

Level 3 

As shown in Table 3.4, most coefficients of explanatory variables are statistically 

significant and have expected signs, except for coefficients of origin departure delay of 

connecting routes. Estimates from OLS method are listed in column (1) and (3). 

Column (2) and (4) present results from IV estimation, in which air fare is instrumented. 

Since the estimates from the same estimation method are close, results with significant 

(in both OLS and IV estimations) variables—column (3) and (4)—are further discussed 

and used to calculate inclusive values and estimate coefficients of higher levels. 

The consistency is determined by the estimated ratio(s) of scale parameters of these 
models, as discussed in section 3.1.1. Although the estimated ratios of scale 
parameters are different for different specifications, the conclusions of the consistency 
are the same under different experiments of specifications. 
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Table 3.4 Panel Data Estimation Results of Level 3 

Variable 
(1) 

OLS-1 
(2) 

IV-1 
(3) 

OLS-2 
(4) 

IV-2 
-0.160 
[0.005] 

1.326*" 
[0.016] 

0.441*" 
[0.009] 

0.821*** 
[0.007] 

-0.019*** 
[0.000] 

-0.019*** 
[0.000] 

3.821"* 
[0.141] 

-0.001 
[0.001] 

-0.001* 
[0.001] 

-0.012 
[0.002] 

-0.004 
[0.002] 

-0.001 
[0.002] 

-1.549 
[0.206] 

1.240*** 
[0.028] 

0.627*** 
[0.030] 

0.957 
[0.023] 

-0.004 
[0.002] 

-0.006 
[0.002] 

6.079*** 
[0.406] 

-0.006 
[0.002] 

-0.007*** 
[0.002] 

0.005 
[0.004] 

-0.004 
[0.003] 

-0.005 
[0.005] 

-0.160 
[0.005] 

1.337*" 
[0.016] 

0.440*** 
[0.009] 

0.822 
[0.007] 

-0.019*** 
[0.000] 

-0.019 
[0.000] 

3.874*** 
[0.141] 

-0.002 
[0.001] 

-0.002** 

-1.546 
[0.206] 

1.240*** 
[0.029] 

0.627 
[0.030] 

0.957*** 
[0.023] 

-0.004a 

[0.002] 

-0.006** 
[0.002] 

6.066 
[0.397] 

-0.006*** 
[0.002] 

-0.007*** 

Fare (hundreds of 2004 dollars) 

ln(Frequency)—Direct 
(flights per quarter) 

ln(Max frequency of two 
segments) —Connecting 
(flights per quarter) 
ln(Min frequency of two 
segments) —Connecting 
(flights per quarter) 
Scheduled flight time—Direct 
(minutes) 

Scheduled flight time—Connecting 
(minutes) 

Dummy for direct routes 
(=1, if direct route) 

Positive hub arrival delay t-i 
(minutes per flight) 

Positive hub arrival delay t-4 
(minutes per flight) 

Positive origin departure delay t-i 
— Connecting (minutes per flight) 

Positive origin departure delay t-4 
—Connecting (minutes per flight) 

Constant 

[0.001] [0.002] 

T 
Adjusted R2 

F 

-0.001 
[0.002] 

-0.005 
[0.005] 

0.749 
0.749 

4943.734 

0.114D 

0.114b 

3896.23fc 

0.748 
0.748 

5158.682 

0.114° 
0.114b 

4100.09b 

Notes: (1) Dependent variable- ln(MSrt|p/) - \n(MSr,t[pt) = ln(MSrt) - \n(MSr.t); 

independent variable k = (xrlk - xr,tk); (2) Standard errors in brackets are robust to 

heteroskedasticity, serial correlation and market cluster effects; (3) * p < 0.05, ** p 
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< 0.01, *** p< 0.001; (4)a: p-value=0.06; (5)b: Statistics of the first stage; (6) All 

regressions include 29 hub dummy variables, which are not shown here. 

Although all estimated fare coefficients illustrate negative fare impacts on demand, 

the fare coefficients from IV estimates are more reasonable. This can be seen from their 

inferred values of travel time (VOTs). Recall that when air fare is endogenous47, its 

coefficient estimated by OLS is more likely biased towards zero and thus the inferred 

VOTs are overestimated. As shown in Table 3.5. Estimates from OLS method—column 

(1), (3) and (5)—give unreasonable high VOTs, especially for values of scheduled flight 

time: all the inferred values of scheduled flight time are greater than $614 per hour (39 

times larger than the median wage rate of 2004). While literature on transportation 

economics suggests a wide range of VOTs48, inferred VOTs from OLS estimates are still 

out of these ranges. In contrast, fare coefficients from IV estimations are larger (in 

absolute values) than those from OLS estimations, and provide sensible VOTs—at least 

in the same order as those reported in the literature. For example, the value of scheduled 

flight time of direct routes, given by the preferred model—column (4)—is $16.8 per hour 

(105 percent of wage rate). 

Tests for endogeneity of air fare based on the proposed instrumental variable appear 
that air fare is endogenous for different specifications. 

For example, Small and Winston (1999) summarized estimates of value of time by 
transportation mode. The range, for different modes and trip types, is from 6 to 273 
percent of wage rate. They also described that air travelers have a very high VOT—the 
VOT for air travelers for vacation trips is 149 percent of wage rate, estimated by 
Morrison and Winston (1985). 
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Table 3.5 Inferred Values of Travel Time 

Time type 

Scheduled flight 
time 
—Direct 
Scheduled flight 
time 
—Connecting 
Positive hub arrival 
delay t-i 
Positive hub arrival 
delay t-4 

(1) 
NL3B 
OLS-1 
726.3 

(4553%) 
705.7 

(4424%) 
40.5 

(254%) 
56.0 

(351%) 

(2) 
NL3B 
IV-1 
16.7 

(104%) 
23.9 

(150%) 
23.5 

(148%) 
27.1 

(170%) 

(3) 
NL3B 
OLS-2 
721.7 

(4525%) 
705.5 

(4423%) 
63.7 

(399%) 
68.8 

(431%) 

(4) 
NL3B 
IV-2 
16.8 

(105%) 
24.1 

(151%) 
22.5 

(141%) 
27.6 

(173%) 

(5) 
MNL 
OLS 
614.4 

(3852%) 
623.8 

(3911%) 
124.4 

(780%) 
138.2 

(867%) 

(6) 
MNL 

IV 
21.3 

(134%) 
32.9 

(206%) 
33.6 

(210%) 
49.3 

(309%) 

Notes: (1) Units of VOTs: dollars per hour in 2004 dollars; (2) VOTs as percentages of 

wage rate are shown in parentheses. The U.S. median wage rate of 2004— 

$15.96 per hour (Bureau of Labor Statistics, 2008)—is used to calculate these 

percentages; (3) Column 5 and 6 are based results of MNL models (with similar 

specification as column 3 and 4) estimated by OLS and IV, respectively. Refer 

to Table 3.8 for the MNL models. 

Although all estimated frequency coefficients indicate that potential travelers prefer 

routes with high flight frequency, marginal effects of different frequency variables are 

different. The results confirm the hypothesis that the minimum frequency is more critical 

to the connecting service, and thus a proportional flight frequency increase on the 

segment with lower frequency increases service attractiveness more than an equivalent 

change on higher frequency segment. Differences in coefficient estimates among the 

different frequency variables are less pronounced in the IV results. The ratios (Max: Min: 

Direct) are 1: 1.9: 3 as compared to 1: 1.5: 2 for the OLS estimates. 

92 



www.manaraa.com

Although all coefficients of scheduled flight time indicate that travelers prefer 

routes with shorter scheduled flight time, only the IV estimates suggest significantly 

different marginal effects for different routing types. The IV estimates show that a 

one-minute increase of scheduled flight time on connecting routes have a larger49 (about 

1.4 times) impact of utility than that on direct routes, while the OLS estimates50 give 

almost equal marginal effects for both routing types. As a result, the IV estimates imply 

larger VOTs for connecting routes than for direct routes, given that the fare coefficients 

are identical for both routing types. This result has two possible explanations. First, 

travelers may feel more comfortable spending their time on direct flights than on 

connecting ones. One the former, for example, they do not have to worry about missing 

their subsequent flights due to flight delay and/or finding gates. Second, there may be 

nonlinear effects of flight time that translate into the observed differences in coefficient 

estimates. Given a city-pair market, scheduled flight time of a connecting route is 

normally greater than that of a direct route. The nonlinear effects would make travelers 

less likely to choose a connecting route with flight time much longer than that of a direct 

route. 

Positive hub arrival delay of one and four quarters before the decision quarter are 

the only significant delay variables in our IV estimations, although many on-time 

The hypothesis that the scheduled flight time coefficient of connecting routes is less 
than or equal to that of direct routes is rejected at the 5% significance level. 

Endogenous air fare may lead to inconsistent estimates, not only for the coefficients of 
air fare but also for coefficients of other variables, when the OLS method is applied. 
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performance metrics51 were tried. This suggests that potential travelers make decisions 

based on recent available information—including most recent impressions and seasonal 

effects—on positive hub arrival delay. Compared to other delay metrics, positive hub 

arrival delay receives more attention due to its higher penalty—missing connecting 

flights. Another reason is that travelers usually have fewer chances of choosing origin 

and destination airports than choosing hub airports. Note that the two hub delay variables 

are specific for connecting routes—travelers choosing direct routes are free of hub delay. 

When choosing among connecting routes, travelers avoid connecting at airports with high 

expected delay in certain seasons. 

For all specifications and estimation methods in Table 3.4, the coefficient 

differences between the two hub delay variables are not statistically significant52, 

implying that potential travelers weigh on-time performance of the two periods (one and 

four quarters before the decision quarter) equally. In addition, we expect that under 

steady state, a one-minute hub delay increase has a larger impact on demand than an 

equivalent change in scheduled flight time of a connecting route, because (1) delay 

disturbs travelers' original schedules and plans, and (2) travel time uncertainty may make 

travelers uncomfortable. The NL3B-IV estimates confirm this hypothesis: the sum of two 

As discussed in section 3.1.2, this research investigates (1) departure delays of origin 
and hub airports, and arrival delays of hub and destination airports; (2) positive and 
negative delays; and (3) delays of one and four quarters before the decision quarter. 
The total number of delay variables is 16 (4*2*2). 

All p-values are greater than 0.52. 

94 



www.manaraa.com

hub delay coefficients is larger than the coefficient of scheduled flight time (both in 

absolute values). 

According to the data, arriving or departing earlier than schedule time does not 

significantly make a route more attractive. The hypothesis that negative delay has smaller 

marginal effects on demand than positive delay is confirmed, although this is mainly 

because the coefficients of negative delays are zero. 

After controlling for the other factors (such as fare, frequency, scheduled flight 

time and delay) the coefficients of the direct route dummy variable still indicate that 

potential travelers strongly prefer direct routes than connecting routes, regardless of 

specifications and estimation methods. 

Level 2 

Estimation results for level 2 are shown in Table 3.6: column (1) to (4) are 

estimates based on the inclusive values of level 3 estimated by IV; column (5), for 

comparison purpose, specifies the same explanatory variables as column (4) except for 

taking the inclusive values of level 3 estimated by OLS. The on-time performance effects 

on O-D airport choice are examined at this level. As shown in column (1) to (3), none of 

these delay variables are statistically significant. Thus, even when travelers are able to 

choose O-D airports, on-time performance of these airports does not notably affect their 

The null hypothesis that the sum of hub delay coefficients is less than or equal to the 
coefficient of scheduled flight time (both in absolute values) is rejected at the 5% 
significance level (a one-tailed p-value of 0.032). 
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decisions, controlling for expected utilities from route characteristics (such as fare) and 

fixed airport effects. 

Table 3.6 Panel Data Estimation Results of Level 2 

Variable 
Inclusive value of 
level 3 (IV) 
(parameter= X 1 Xa) 

Inclusive value of 
level 3 (OLS) 
(parameter^X /Xa) 

Positive origin 
departure delay t-i 
(minutes per flight) 
Positive destination 
arrival delay t-i 
(minutes per flight) 
Constant 

tf 
Adjusted R2 

F 

(1) 
IV-2-1 

0.676*** 
[0.014] 

-0.003 
[0.003] 

-0.004 
[0.002] 

0.003 
[0.004] 
0.859 
0.859 

1358.742 

(2) 
IV-2-2 

0.676*** 
[0.014] 

-0.003 
[0.003] 

0.003 
[0.004] 
0.859 
0.859 

1376.666 

(3) 
IV-2-3 

0.676*** 
[0.014] 

-0.004 
[0.002] 

0.004 
[0.004] 
0.859 
0.859 

1378.498 

(4) 
IV-2-4 

0.664*** 
[0.014] 

0.007 
[0.005] 
0.855 
0.855 

1363.173 

(5) 
OLS-2-1 

0.937"* 
[0.011] 

-0.002 
[0.004] 
0.895 
0.895 

1121.061 

Notes: (1) Dependent variable^ ln(MSp(|a() - ln(MSp.t]at) = \n(MSpl) - ln(MSp7); 

independent variable k = (xptk - xp,tk); (2) Standard errors in brackets are robust 

to heteroskedasticity, serial correlation and market cluster effects; (3) p < 0.05, 

p < 0.01, p< 0.001; (4) All regressions include origin and destination 

airport dummy variables for MASs. 

The final specification—column (4)—at this level incorporates only inclusive value, 

along with origin and destination airport dummy variables for MASs. The estimated ratio 
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of scale parameters (X IXa) based on the IV estimates of level 3 is 0.664, implying that 

the correlation of the total utilities for two air routes sharing the same O-D airport pair is 

moderate. However, the OLS estimates of level 3 lead to large (close to 1) ratio of scale 

parameters (X I Xa), implying that the correlation is very low. The large difference 

between estimated ratios of scale parameters from two estimation methods and their 

implications demonstrate the importance of correcting for the endogenous air fare 

problem. 

Level 1 

Estimates of level 1 are presented in Table 3.7: column (1) and (3) list results based 

on the OLS estimates of lower levels; column (2) and (4) show results associated with the 

IV estimates of lower levels. Coefficients of income indicate that higher income level 

generates more air trips, as expected. While column (1) and (2) assume fixed ratios of 

scale parameters (Xa/Xm), column (3) and (4) allow the ratios to change with market 

distance —that is, the correlations of the total utilities for two O-D airport pairs may be 

different for long-haul and short-haul markets. 
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Table 3.7 Panel Data Estimation Results of Level 1 

Variable 
Inclusive value of level 2 
(OLS) (parameter^ Xa 1 Xm) 

Inclusive value of level 2 
(IV) (parameter^ ka 1 Zm) 

Inclusive value of level 2 
(OLS)*market distance 

Inclusive value of level 2 
(IV)*market distance 

Market distance 
(hundreds of miles) 

ln(market distance) 

Per capita personal income 
of market 
(thousands of 2004 dollars) 
Constant 

R2 

Adjusted R2 

F 

(1) 
OLS-2-1-1 

0.629*** 
[0.006] 

0.012* 
[0.005] 

1.539*** 
[0.042] 

0.014*** 
[0.003] 

*** 
-16.403 

[0.0951 
0.731 
0.731 

1884.591 

(2) 
IV-2-4-1 

0.670*** 
[0.006] 

-0.055*** 
[0.005] 

1.338"* 
[0.046] 

0.036 
[0.003] 

-15.271 
[0.092] 
0.763 
0.763 

2147.085 

(3) 
OLS-2-1-2 

0.711*** 
[0.009] 

-0.008*** 
[0.001] 

0.018*** 
[0.005] 

1.888*** 
[0.048] 

0.015*** 
[0.003] 

-17.316*** 
[0.116] 
0.736 
0.736 

1860.785 

(4) 
IV-2-4-2 

0.795*** 
[0.010] 

-0.012*** 
[0.001] 

-0.024*** 
[0.005] 

1.575*** 
[0.046] 

0.038*** 
[0.003] 

-16.229*** 
[0.102] 
0.773 
0.773 

2136.309 

Notes: (1) Dependent variable=ln(M5'a,) - \n(MS0t); (2) Standard errors in brackets are 

robust to heteroskedasticity, serial correlation and market cluster effects; (3) p < 

0.05, p < 0.01, *p< 0.001; (4) All regressions include 8 year and 3 quarter 

dummy variables for time fixed effects. 

The estimated ratios of scale parameters (Xa I Xm) show that OLS generally gives 

smaller ratios than those of IV, except for really long-haul markets (distance>=2,500 

miles). When the ratios are allowed to change with market distance, both OLS and IV 
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estimates of the ratios are consistent with utility-maximization (between 0 and 1) for a 

reasonable range of market distance. For example, the ratio is 0.56, calculated from 

column (4), for a city-pair with distance of 2000 miles. In addition, longer-haul markets 

have lower ratios of scale parameters (Aa I Xm), implying that the correlations of the total 

utilities among O-D airport pairs (and thus among routes) in longer-haul markets are 

higher. The higher correlation of two alternatives within a nest, the higher possibility that 

the two alternatives substitute for each other—an alternative of other nest is less likely to 

substitute for one of the two alternatives. Thus, the estimated ratios of both column (3) 

and (4) indicate that in a longer-haul market route attribute changes are more likely to 

shift traffic between air routes as opposed to affecting total air market traffic. In 

shorter-haul markets, air routes, which have lower correlations, are more likely to 

compete with other modes (non-air alternative, in different nest), such as auto and rail. 

As discussed in section 3.1.2, the effect of market distance on air route demand 

may be concave—the marginal effect may be decreasing as distance increases. Estimates 

of column (1) and (2) show this concavity. Estimates of column (3) and (4) also yield 

these effects, given a reasonable range of inclusive values of level 2. The distance effects 

of column (3) and (4), which are partially determined by inclusive values, are visualized 

in Figure 3.10. For each column, the inclusive values are either set to their mean values 

or to the predicted values that are determined by a function of distance. Two regressions 

of inclusive value on market distance are run to provide these two functions. 

99 



www.manaraa.com

Figure 3.10 Market Distance Effects 

As shown in Figure 3.10, the marginal effects decrease as market distance increases 

for all cases. Considering the cases where inclusive value depends on market distance54, 

both the OLS and IV estimates imply that air routes have the highest demand potential in 

markets of distance 850 to 900 miles, all else equal. For markets of distance shorter than 

that range, the distance effects reflect declining competition from competing modes, 

which causes air demand to increase with distance; in long-haul markets, the effect is 

reversed, presumably due to negligible mode competition and decreasing propensity to 

54 The underlying assumption is that the characteristics of air routes, captured by the 
inclusive values, depend on market distance. 
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travel. These findings are somewhat supported by the National Household Travel Survey 

(U.S. Department of Transportation, 2001), which shows that mode share for air 

increases with distance and air becomes the dominant mode starting from the markets of 

distance 750 to 999 miles. 

Summary and Discussions 

Combining the estimates of the three levels, the NL3B models, estimated by OLS 

and IV methods, are summarized in Table 3.8. In addition, two MNL models with similar 

specifications and identical estimation methods are presented for comparison. The 

NL3B-IV model, column (4), is the preferred model, since its estimates and implications 

are more sensible, especially for the results of level 2 and 3, in which imply reasonable 

VOTs (shown in Table 3.5) and correlations of total utilities for air routes. Note that 

correcting for the endogeneity problem of air fare also helps to determine the appropriate 

(consistent with utility-maximization) nesting structure, since the ratios of the scale 

parameters in NL models are affected by the endogeneity problem. 
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Table 3.8 Summary and Comparisons of Panel Data Estimation Results 

Variable 

Fare (hundreds of 2004 dollars) 

ln(Frequency)—Direct 
(flights per quarter) 
ln(Max frequency of two segments)— 
Connecting (flights per quarter) 
ln(Min frequency of two segments)— 
Connecting (flights per quarter) 
Scheduled flight time—Direct 
(minutes) 
Scheduled flight time— Connecting 
(minutes) 
Dummy for direct routes 
(=1, if direct route) 
Positive hub arrival delay t-i 
(minutes per flight) 
Positive hub arrival delay t-4 
(minutes per flight) 
Inclusive value of level 3 
(parameter^ X /Xa) 

Inclusive value of level 2 
(parameter^ 1 Xm) 

Inclusive value of level 2 *market 
distance 
Market distance (hundreds of miles) 

ln(market distance) 

Per capita personal income of market 
(thousands of 2004 dollars) 
Constant (level 1) 

(1) 
MNL 
-OLS 

-0.178'" 
[0.005] 
1.282"* 
[0.015] 
0.408*" 
[0.010] 
0.793*** 
[0.0071 

-0.018** 
[0.000] 

-0.018 
[0.000] 
3.353*" 
[0.145] 

-0.004* * 
[0.001] 

-0.004*** 
[0.001] 

0.148"* 
[0.005] 
1.261*" 
[0.042] 

-0.665 
[0.006] 
0.003 

[0.003] 

(2) 
MNL 
-IV 

-1.410*" 
[0.411] 
1.212*" 
[0.030] 
0.501*** 
[0.034] 
0.883"* 
[0.035] 
-0.005 
[0.0041 
-0.008 
[0.004] 
4.477*** 
[0.421] 

-0.008*** 
[0.002] 

-0.012*** 
[0.003] 

0.150*** 
[0.010] 
0.844*** 
[0.145] 

-0.637*** 
[0.012] 
-0.001 
[0.0061 

(3) 
NL3B 
-OLS 

-0.160*** 
[0.005] 
1.337*" 
[0.016] 
0.440*** 
[0.009] 
0.822*** 
[0.0071 

-0.019 
[0.0001 

-0.019 
[0.000] 
3.874*** 
[0.141] 
-0.002** 
[0.001] 
-0.002** 
[0.001] 
0.937 
[0.011] 

0.711*" 
[0.009] 

-0.008*** 
[0.001] 
0.018*** 
[0.005] 
1.888*** 
[0.048] 
0.015*** 
[0.003] 

-17.316"* 
[0.116] 

(4) 
NL3B 

-IV 
-1.546*** 
[0.206] 
1.240*** 
[0.029] 
0.627*** 
[0.030] 
0.957*** 
[0.023] 
-0.004 
[0.002] 
-0.006** 
[0.002] 
6.066*** 
[0.3971 

-0.006*** 
[0.002], 

-0.007** 
[0.002] 
0.664*** 
[0.014] 

0.795*** 
[0.010] 

-0.012*" 
[0.001] 

-0.024 
[0.005] 
1.575"* 
[0.046] 
0.038*** 
[0.003^ 

-16.229 
[0.102] 

Notes: (1) Standard errors in brackets are robust to heteroskedasticity, serial correlation 

and market cluster effects; {!)* p < 0.05, ** p < 0.01, ***p < 0.001; (3) All 

regressions include hub dummy variables for connecting routes, origin and 

destination airport dummy variables for MASs, and year and quarter dummy 

variables for time fixed effects; (4) MNL models are estimated by Equation (3.7), 

in which the base alternative is randomly picked. 
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For the nesting structures, the NL3B models outperform the MNL models. First, 

the NL3B models confirm the non-homogeneous correlations among alternatives, 

implying that the MNL models incorrectly portray substitution patterns among routes. 

Second, while the MNL models give similar patterns of coefficients for route level 

variables, their income (a market level variable) coefficients are not reasonable—both 

coefficients indicate that air routes become less attractive when income increases. One 

possible explanation is that the income coefficients are estimated by comparing all air 

routes with the non-air alternative in the NL3B models, but the income coefficients are 

estimated by comparing individual routes with the non-air alternative in the MNL models. 

When income increases, even though the total market share of air routes increases the 

market share of a route may decrease, because the number of available routes may 

increase with income. Similar situations may happen to other market level variables. 

Therefore, the NL3B models are preferable. 

Corrections for standard errors of higher level coefficients may be needed. Because 

the sequential estimation does not carry variances of inclusive values into higher levels, 

the standard errors of higher level coefficients in these levels are usually underestimated, 

which may lead to invalid inferences and hypothesis tests. The standard errors presented 

in Table 3.6, 3.7 and 3.8 are not corrected since most of the coefficients are very 

significantly different from zero. However, all the standard errors reported in this 

research are robust to heteroskedasticity, serial correlation and market cluster effects, 

since error terms are unlikely to be independent and identically distributed. 
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Recall that to implement the proposed model this research assumes saturated 

demand levels, depending on city-pair population. The results of lower levels are not 

affected by the assumption because of the difference-in-differences estimation. Thus, the 

impacts of the assumption are examined for level 1 only. All results of Table 3.7 are 

based on the assumption that every unit of population may make 10 trips per quarter. 

Taking column (4) of Table 3.7 as the base case and changing the assumption to different 

numbers of trips lead to Table 3.9. 

As shown in the Table 3.9, estimates change very little, except for the intercept. 

Aside from these, the biggest differences are between column (1) and (2). The 

assumption of column (1) is that every potential traveler may make 0.5 trips per quarter, 

which is too close to the realized traffic level and not large enough to account for the 

potential demand. Results of Tables 3.9 thus confirm that the setting of the saturated 

demand only affects the estimated intercept of the market share model if the 

proportionality factor is set large enough, as discussed in chapter 2. 
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Table 3.9 Sensitivity Tests for Saturated Demand Settings 

(1) (2) (3) (4) (5) 
Variable 0.5 trips 1 trips 5 trips 10 trips 50 trips 
Inclusive value of level 2 5~8o7" 0 7 9 ? " 0^795^ 0~79l> 0.794 
(IV) [0.011] [0.010] [0.010] [0.010] [0.010] 

Inclusive value of level 2 -0.012*** -0.012*" -0.012*** -0.012*** -0.012*** 
(IV)*market distance [0.001] [0.001] [0.001] [0.001] [0.001] 

Market distance -0.023*** -0.023*** -0.024*** -0.024*** -0.024*** 
(hundreds of miles) [0.005] [0.005] [0.005] [0.005] [0.005] 

ln(market distance) 1.584*** 1.579*** 1.576*** 1.575*** 1.575*** 
[0.046] [0.046] [0.046] [0.046] [0.046] 

Per capita personal income 0.038*** 0.038*** 0.038*** 0.038*** 0.038*** 
of market (thousands of [0.003] [0.003] [0.003] [0.003] [0.003] 
2004 dollars) 

[0.103] [0.102] rO-1021 [0-102] [0.102] 
I 1 0.773 0.773 0.773 0.773 0.773 

Adjusted./?2 0.773 0.773 0.773 0.773 0.773 
_F 2134.676 2136.188 2136.346 2136.309 2136.270 

Notes: (1) Dependent variable= \n{MSat)- \n(MS0t); (2) Standard errors in brackets are 

robust to heteroskedasticity, serial correlation and market cluster effects; (3) * p < 

0.05, p < 0.01, p < 0.001; (4) All regressions include 8 year and 3 quarter 

dummy variables for time fixed effects; (5) Market shares are calculated by 

assuming every potential traveler may take 0.5, 1, 5, 10, and 50 trips per quarter 

for column 1 to 5, respectively. 

_ _ * * * *=)<# * • * * # # * 

Constant -13.284 -13.950 -15.538 -16.229 -17.836 
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Chapter 4 Implications and Applications 

Implications and applications of the estimated model are presented in this chapter. 

Demand elasticities with respect to different variables, among which fare is particularly 

of interest, are calculated and discussed first. Then, policy experiments on fare and 

on-time performance are conducted to demonstrate applications of the model. Structural 

changes over time are investigated in the last section. 

4.1 Demand Elasticities 

Elasticity is a useful tool in demand analysis. As a result, many estimates of air 

travel demand elasticities, especially those with respect to fare, can be found in the 

literature on transportation. Comparing demand elasticities from our models to previous 

estimates helps us assess model validity. Elasticity, since it is dimensionless, also 

provides a convenient way to compare the relative importance of causal factors. This is 

particularly useful for nested logit models, in which direct comparisons between variables 

of different nests is difficult, since the estimated coefficients are affected by scale 

parameters. 

The estimated parameters of models (Table 3.8) are used to calculate route and 

market demand elasticities by simulation for each observation in the sample. These 

elasticities are estimated numerically, instead of analytically, because for the proposed 
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model and variables, the numerical approach is simpler than the analytical approach . 

The elasticities weighted by the number of passengers are also calculated for comparisons. 

In addition, the estimated elasticities with respect to fare and income are compared with 

their counterparts in the literature. 

The demand elasticity with respect to a variable is determined by calculating the 

percentage change in demand resulting from one percent increase in the variable, holding 

all other independent variables fixed. This method is used to find route demand 

elasticities with respect to fare, frequency, and scheduled flight time. The market demand 

elasticity with respect to a variable is calculated by increasing that variable by one 

percent for all routes in a market and calculating the resulting percentage change in 

market demand. For a route connecting at a specific hub, the route elasticity with respect 

to positive hub arrival delay is calculated by changing the hub delay, which may affect 

more than one route in an MAS. 

4.1.1 Demand Elasticity with respect to Fare 

Fare elasticities of market and route demand are summarized in Table 4.1. Since 

potential travelers have more choices at route level than at market level, fare elasticities 

of route demand are expected to be larger (in absolute values) than those of market 

The formula for elasticity becomes much more complicated in higher level nesting 
logit models. In addition, the variables of the model belong to several different 
aggregation levels (e.g. route, airport, and market levels), and variables of different 
levels need different formulas for their elasticities, if the analytical approach was 
chosen. 
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demand. While the fare elasticities calculated from the NL3B model, including OLS and 

IV estimates, are consistent with the expectation, those calculated from the MNL model 

are not. In addition, when market size (measured by the number of passengers) is taken 

into account, the elasticities generally become smaller in absolute values. This indicates 

that the fare elasticities of low traffic markets are higher. Details of these elasticities are 

discussed by aggregation level below. 

Table 4.1 Demand Elasticities with Respect to Fare 

Aggregation 
Level 

Market 

Route 

Statistics 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 

MNL-OLS 
UWT 

-0.365 
0.131 

-0.445 
-0.352 
-0.270 
-0.381 
0.213 

-0.451 
-0.331 
-0.252 

WT 

-0.298 
0.142 

-0.379 
-0.267 
-0.191 
-0.293 
0.152 

-0.368 
-0.256 
-0.184 

MNL-IV 
UWT 

-2.662 
0.907 

-3.205 
-2.571 
-2.033 
-2.968 
1.606 

-3.518 
-2.593 
-1.978 

WT 

-2.181 
0.909 

-2.766 
-2.036 
-1.490 
-2.290 
1.175 

-2.879 
-2.010 
-1.448 

NL3B-OLS 
UWT 

-0.189 
0.064 

-0.232 
-0.183 
-0.141 
-0.322 
0.190 

-0.376 
-0.276 
-0.212 

WT 

-0.154 
0.065 

-0.195 
-0.140 
-0.104 
-0.210 
0.117 

-0.264 
-0.184 
-0.124 

NL3B-IV 
UWT 

-1.287 
0.420 

-1.539 
-1.230 
-0.987 
-2.970 
1.783 

-3.516 
-2.525 
-1.908 

WT 

-1.052 
0.380 

-1.292 
-0.992 
-0.765 
-1.763 
1.160 

-2.252 
-1.455 
-0.924 

Note: (1) UWT and WT represent statistics that are unweighted and weighted by the number of 
passengers of markets, respectively; (2) Market demand elasticities with respect to fare 
are calculated by increasing one percent of fares of all air routes in markets. 

Fare Elasticities of Market Demand 

The fare elasticities can be further investigated by their distributions and compared 

with other estimates in the literature. Figure 4.1 presents the percentiles of the fare 

elasticities from different model forms and estimation methods. Several observations 

emerge from this figure. First, it clearly shows that estimation methods (OLS versus IV) 
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create much larger differences of fare elasticities than model forms (MNL versus NL3B) 

do. While the fare elasticities from the OLS estimates indicate inelastic market demand, 

the unweighted fare elasticities from the IV estimates imply that for the majority of 

markets (about 74% of markets according to the NL3B-IV estimates), air demand is fare 

elastic. The weighted fare elasticities, of which the mean and median are about -1, from 

NL3B-IV estimates show that half of market demand is fare elastic. 

Second, the elasticities from the MNL models are larger in magnitude than those 

from the NL3B models, given the same percentile and estimation method. Third, given 

the same percentile and model form, the weighted elasticities are smaller in magnitude 

than the unweighted elasticities. This indicates that fare elasticities of low traffic markets 

are higher than those of high traffic markets. A possible reason is that current fares in the 

low traffic markets are relatively high. Thus, a proportional fare increase reduces more 

service attractiveness in these markets. 
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Figure 4.1 Market Demand Elasticities with Respect to Fare 

110 



www.manaraa.com

The fare elasticities from the NL3B-IV estimates are supported by the above 

observations and also by findings in the literature. Oum et al (1986) reported that fare 

elasticities of market demand56 were -1.51 and -1.15 for vacation and non-vacation 

markets, respectively. These estimates are within the range of the elasticities from the 

NL3B-IV estimates. In addition, the fare elasticity percentiles taken from Gillen et al 

(2002)57 are plotted in panel (b) of Figure 4.1, which demonstrates that the NL3B-IV 

estimates provide fare elasticities closer to those from other studies, especially for larger 

absolute elasticities (smaller percentiles). 

It is interesting to observe that the elasticities from the NL3B-IV estimates accord 

with the variation of elasticities from other studies. One of the reasons may be that 

varieties of markets are involved in our sample—covering most domestic markets of the 

United States for 10 years. The elasticity distribution from Gillen et al (2002) consists of 

elasticities from different studies, which also involve different study regions, market 

distance, and time periods. 

Fare Elasticities of Route Demand 

As shown in Table 4.1, the unweighted means of fare elasticities from both IV 

estimates are about -2.9. Although the weighted means become smaller in absolute values, 

all the means of the fare elasticities from the IV estimates indicate that route demand is 

fare elastic. All the means of fare elasticities from the OLS estimates, however, suggest 

56 They used the term "aggregate route demand" for the market demand. 

57 They summarized 274 estimates, taken from 22 studies, of fare elasticities of market 
demand. 

I l l 



www.manaraa.com

that route demand is fare inelastic. The fare elasticities from the IV estimates are better 

supported by the inferred values-of-time (Table 3.5) and the literature (discussed below). 

The distributions of fare elasticities of route demand from the IV estimates plotted 

in Figure 4.2, in which patterns similar to Figure 4.1 can be observed. In addition, these 

percentiles imply that the distributions of fare elasticities of route demand are not 

symmetric and have longer left tails . This is sensible since fare elasticities are more 

likely to be bounded on the right sides (e.g. less than zero). 
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Figure 4.2 Route Demand Elasticities with Respect to Fare (IV Estimates) 

58 This is consistent with the findings in the literature, such as Gillen et al (2002). 
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Direct comparisons of estimates from literature and this research cannot be made 

because most fare elasticities available in the literature are estimates for air market 

demand or for airline demand. However, some guidelines for ranges of fare elasticities 

are available. 

One would expect that elasticities of route demand should be larger (in absolute 

values) than those of market demand, since people generally have higher flexibility in air 

routes as long as they can arrive their destinations, and changing to other modes or trip 

cancelations are less likely to be their choices. Summarizing from the literature on air 

market demand, Gillen et al (2002) reported that the medians of the fare elasticities for 

different trip lengths and trip purposes range from -0.70 to -1.52. The fare elasticities of 

route demand from the OLS estimates are, like those of market demand, too low—most 

of them are smaller (in absolute values) than those of market demand from Gillen et al 

(2002). The fare elasticities from the IV estimates seem more reasonable: (1) the medians 

are -2.95 (from MNL-IV) and -2.53 (from NL3B); (2) most of them are less than -1 

indicating that potential travelers are fare elastic. 

Fare elasticities of route demand are comparable to some degree to elasticities of 

airline demand (in a particular market) reported in the literature. First, for monopolistic 

routes, route demands are equivalent to airline demands. For example, airlines serving the 

same market generally offer competing routes each connecting at their respective hubs, 

so that each route corresponds to one airline. When airlines compete with each other on 

the same routes, elasticities of airline demand should be higher than those of route 
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demand. This may be offset, however, by airline brand loyalty (e.g. due to frequent flyer 

programs), which reduces airline demand elasticities. 

The fare elasticities of route demand from the IV estimates (Figure 4.2) are 

consistent with these expectations. For most routes, the estimated absolute fare 

elasticities are larger than those of market demand, and close to smaller than those of 

airline demand, compared with the estimates of Oum et al (1993). Oum et al (1993) 

estimated fare elasticities of market demand59 and computed airline specific fare 

elasticities using the estimated conduct parameters. The medians of their fare elasticities 

are -1.54 for market demand and -2.99 for airline demand. Our corresponding values are 

-1.23 and-2.53. 

4.1.2 Demand Elasticity with respect to other Variables 

In this section, income and distance elasticities of market demand, and route 

demand elasticities with respect to frequency, and scheduled flight time, hub delay are 

discussed. The income and distance elasticities are presented in Table 4.2. The weighted 

fare and distance elasticities become smaller in absolute values, compared to the 

unweighted elasticities. This indicates that the distance elasticities of low traffic markets 

are higher. However, the weighted income elasticities are larger, suggesting that the 

income elasticities of low traffic markets are lower. 

They used the term "aggregate route demand" for the market demand. 
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Table 4.2 Market Demand Elasticities 

Variable 

Per capita 
personal 
income of 

Market 

Statistics 

Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 

MNL-OLS 
UWT 

2.837 
0.953 
2.084 
2.618 
3.469 

WT 

2.725 
0.971 
1.926 
2.520 
3.166 

MNL-IV 
UWT 

2.434 
0.964 
1.673 
2.212 
3.074 

WT 

2.320 
0.980 
1.515 
2.114 
2.761 

NL3B-OLS 
UWT 

0.494 
0.049 
0.461 
0.490 
0.522 
1.630 
0.191 
1.544 
1.650 
1.727 

WT 

0.539 
0.057 
0.499 
0.535 
0.577 
1.411 
0.234 
1.270 
1.445 
1.584 

NL3B-IV 
UWT 

1.221 
0.121 
1.141 
1.213 
1.293 
0.745 
0.469 
0.480 
0.833 
1.098 

WT 

1.333 
0.140 
1.234 
1.323 
1.428 
0.513 
0.616 
0.154 
0.634 
0.980 

Note: (1) UWT and WT represent statistics that are unweighted and weighted by the number of 
passengers of markets, respectively; (2) Market demand elasticities with respect to 
income from the MNL models are not presented since the coefficients of income have 
unreasonable signs. 

Market Demand Elasticities with respect to Income 

Gillen et al (2002) summarized income elasticities of market demand from 

empirical studies and the reported quantiles are 0.81(lst quantile), 1.14 (median), and 

2.05 (3rd quantile). As presented in Table 4.2, while the quantiles of income elasticities 

from the NL3B-OLS estimates seem relatively low, those calculated from the NL3B-IV 

estimates—1.14 (1st quantile), 1.21 (median), and 1.29 (3rd quantile)—have a similar 

central tendency but less dispersion compared to Gillen's. Almost all (more than 97% of 

markets; more than 99% of passengers) income elasticities from the NL3B-IV estimates 

are greater than 1, implying that air demand is income elastic in most markets. 
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Market Demand Elasticities with respect to Market Distance 

As shown in Table 4.2, the NL3B model and the IV estimation generally yield the 

smallest distance elasticities of market demand. As a result, the elasticities computed 

from the NL3B-IV estimates are smaller than those from the other estimates. While the 

majority of the distance elasticities from the NL3B-IV estimates are positive, about 8% of 

markets (18% in terms of passenger traffic) have negative demand elasticities with 

respect to market distance. This can be explained by the concave relationship between 

market distance and air demand, as found in Table 3.8. 

Distance effects from the NL3B-IV estimates for markets with similar distance may 

vary, since they also depend on inclusive values, which represent service levels of air 

routes. Demand elasticities with respect to market distance can help to understand the 

distance effects of individual markets. Figure 4.3 summarizes the incidence of negative 

distance elasticities by distance category. Three main generalizations emerge from the 

figure. First, over 99.5% of markets with distance less than 1200 miles have positive 

distance elasticities. That is, for two markets with distance less than 1200 miles, the 

longer distance market is expected to have higher air demand, all else (such as 

population, income, and service levels) being equal. 
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Figure 4.3 Markets (Passengers) with Negative Distance Elasticities 

Second, for markets with distance longer than 1200 miles, the percentage of 

markets (or passengers) with negative distance elasticities increases—from 2.5% (21.5% 

of passengers) to 64%) (97.1% of passengers)—with market distance. This indicates that 

the influence of propensity to travel60, as opposed to mode shift, is more likely to be 

observed in longer-haul markets. Third, within each distance category the percentage of 

Recall from chapter 3 that market distance may affect potential travelers in two ways: 
mode choice and propensity to travel, which may offset each other. While mode 
competition is dominant in shorter-haul markets, it becomes negligible in longer-haul 
markets. The influences of propensity to travel may thus prevail in longer-haul 
markets. 
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passengers with negative distance elasticities is higher than the percentage of markets 

with negative distance elasticities. This implies that negative distance elasticities are 

more likely to be found in higher traffic markets, which are usually better served and thus 

have larger inclusive values61. All else being equal, while the influence of declining 

propensity to travel is more pronounced in better served markets, the influence of mode 

competition is stronger in minor markets. 

Route Demand Elasticities with respect to other Variables 

The route demand elasticities with respect to other variables are shown in Table 4.3. 

Elasticities from the preferred model (NL3B-IV) indicate that fare (shown in Table 4.1) 

and hub delay have the highest and lowest, respectively, impacts on route demand. 

As suggested by Table 4.3, route demand elasticities with respect to frequency 

variables are stable across routes—mainly due to their logarithmic functional form. The 

estimated frequency elasticities, however, vary slightly depending on model forms and 

estimation methods. The NL3 model and the IV estimation generally yield smaller 

frequency elasticities for direct routes but larger frequency elasticities for connecting 

routes. As a result, the elasticity differences of three frequency variables from the 

NL3B-IV model are smaller than those from other models. In addition, the frequency 

elasticities from the NL3B-IV model indicate that for most routes adding one percent of 

61 As shown in Table 3.8, the coefficient (from NL3B-IV estimates) of the interaction 
term of distance and inclusive value is negative, which may lead to negative distance 
elasticities when the inclusive value is large. 
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flights on one of its segments is expected to increase route demand by less than one 

percent. 

Table 4.3 Route Demand Elasticities 

Variable 

Frquency— 
Direct 

Max frquency— 
Connecting 

Min frquency-
Connecting 

Schedule flight 
time— Direct 

Schedule flight 
time-
Connecting 

Positive hub 
arrival delay ,.| 

Positive hub 
arrival delay ,.4 

Statistics 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 

Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 
Mean 
Std. Dev. 
25th percentile 
Median 
75th percentile 

MNL-OLS 
UWT 

1.283 
0.001 
1.282 
1.283 
1.283 
0.406 
0.000 
0.406 
0.406 
0.406 

0.792 
0.000 
0.792 
0.792 
0.792 

-2.426 
1.224 

-3.018 
-2.151 
-1.468 
-4.692 
1.480 

-5.819 
-4.481 
-3.522 
-0.041 
0.012 

-0.047 
-0.039 
-0.032 
-0.045 
0.013 

-0.052 
-0.043 
-0.035 

WT 

1.282 
0.002 
1.281 
1.282 
1.283 
0.406 
0.000 
0.406 
0.406 
0.406 

0.792 
0.000 
0.792 
0.792 
0.792 

-2.467 
1.256 

-3.048 
-2.183 
-1.455 
-4.610 
1.403 

-5.700 
-4.398 
-3.506 
-0.041 
0.012 

-0.048 
-0.039 
-0.033 
-0.045 
0.013 

-0.052 
-0.043 
-0.036 

MNL-IV 
UWT 

1.212 
0.002 
1.212 
1.213 
1.213 
0.500 
0.000 
0.500 
0.500 
0.500 

0.883 
0.000 
0.883 
0.883 
0.883 

-0.675 
0.344 

-0.839 
-0.596 
-0.406 
-1.993 
0.638 

-2.476 
-1.899 
-1.488 
-0.088 
0.027 

-0.102 
-0.084 
-0.069 
-0.127 
0.038 

-0.146 
-0.121 
-0.100 

WT 

1.211 
0.004 
1.211 
1.212 
1.213 
0.500 
0.000 
0.500 
0.500 
0.500 

0.883 
0.000 
0.883 
0.883 
0.883 

-0.686 
0.354 

-0.847 
-0.605 
-0.402 
-1.957 
0.604 

-2.425 
-1.863 
-1.482 
-0.088 
0.026 

-0.103 
-0.084 
-0.071 
-0.127 
0.036 

-0.148 
-0.123 
-0.102 

NL3B-OLS 
UWT 

0.985 
0.138 
0.869 
0.936 
1.103 
0.418 
0.031 
0.412 
0.431 
0.437 
0.782 
0.058 
0.771 
0.805 
0.817 

-1.910 
1.047 

-2.450 
-1.639 
-1.131 
-4.567 
1.529 

-5.688 
-4.363 
-3.381 
-0.018 
0.006 

-0.020 
-0.017 
-0.014 
-0.019 
0.006 

-0.022 
-0.018 
-0.015 

WT 

0.998 
0.139 
0.863 
0.989 
1.122 
0.412 
0.032 
0.402 
0.425 
0.434 

0.770 
0.060 
0.751 
0.793 
0.812 

-1.945 
1,029 

-2.472 
-1.678 
-1.182 
-4.428 
1.449 

-5.504 
-4.234 
-3.326 
-0.018 
0.005 

-0.020 
-0.017 
-0.014 
-0.019 
0.005 

-0.021 
-0.018 
-0.015 

NL3B-IV 
UWT 

0.754 
0.112 
0.659 
0.741 
0.817 
0.576 
0.066 
0.562 
0.603 
0.619 

0.881 
0.101 
0.859 
0.922 
0.947 

-0.367 
0.222 

-0.467 
-0.309 
-0.203 
-1.487 
0.526 

-1.864 
-1.419 
-1.087 
-0.059 
0.019 

-0.069 
-0.056 
-0.046 
-0.071 
0.023 

-0.083 
-0.067 
-0.055 

WT 
0.736 
0.100 
0.651 
0.730 
0.799 
0.566 
0.065 
0.542 
0.590 
0.613 
0.865 
0.099 
0.828 
0.902 
0.937 

-0.361 
0.214 

-0.453 
-0.304 
-0.203 
-1.437 
0.499 

-1.803 
-1.376 
-1.061 
-0.058 
0.018 

-0.067 
-0.055 
-0.045 
-0.070 
0.022 

-0.081 
-0.067 
-0.055 

Note: (1) UWT and WT represent statistics that are unweighted and weighted by the number of 
passengers of routes, respectively; (2) Statistics of elasticities are calculated by routing 
type (direct or connecting); (3) For a route connecting at a specific hub, the elasticity 
with respect to positive hub arrival delay is calculated by changing the hub delay, which 
may affect more than one route in an MAS. 
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The NL3B model and the IV estimation lead to smaller (in absolute values) 

scheduled flight time elasticities for both direct and connecting routes. The elasticities 

from the NL3B-IV model suggest that shortening one percent of scheduled flight time is 

expected to increase route demand by more than one percent for connecting routes, but 

less than one percent for direct routes. 

Hub delay elasticities from different model forms and estimation methods are much 

smaller in absolute values than elasticities with respect to other variables. For example, 

the median elasticity with respect to hub delay of previous quarter is only -0.056 , 

according to the elasticities from the NL3B-IV estimates. This implies that potential 

travelers are not very sensitive to hub delay. Therefore, potential travelers will not 

significantly benefit from delay improvements, unless the delay reductions are large. 

4.2 Policy Experiments 

We conducted policy experiments on fare and on-time performance to demonstrate 

applications of the model. We based these on 2004 data63. As the IV estimates lead to 

If we consider hub delay elasticities under stead state, the number is approximately 
doubled, since elasticities with respect to the two hub delay variables are close to each 
other. The small elasticities are not surprising since a one-percent increase in delay 
only increase travel time by a few seconds. 

The number of passengers in the data set is a 10 percent sample from U.S. DOT's 
Airline Origin and Destination Survey (DB1B). All the traffic levels presented in the 
experiments are converted into 100 percent levels by multiplying a factor of 10. 
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more reasonable values-of-time and own-elasticities of demand than OLS estimates do, 

two forms of models estimated by IV method (MNL-IV and NL3B-IV) are compared in 

the policy experiments in order to show their differences in substitution patterns of 

alternatives. 

4.2.1 Fare Experiment 

This experiment illustrates how the model can be used to capture impacts of fare 

changes that might arise from a change in tax policy. For each scenario, a fixed per 

segment fare increase is set. Therefore, the total fare change of a route is equal to the 

increase for a direct route, or twice the increase for a connecting route. Assuming all air 

routes are affected by the fare changes, changes in air passenger traffic volumes— 

including traffic volumes on direct and connecting routes—are used to assess the 

impacts. 

In practice, these scenarios could happen when a segment-related factor that affects 

fares changes. The factor could be a fixed charge for passengers based on flight segment 

(or enplanement). Domestic flight segment tax and passenger facility charge (PFC) are 

examples. When the segment tax or PFC is raised (or reduced), airlines may pass the 

change (or a proportion of the change) to passengers. Thus, the total payments of 

passengers are changed. In this experiment, fare changes—including increase of 2 and 4 

dollars per segment are used in scenarios. Using the model to analyze the impacts of 

different charge schemes is a possible extension of this experiment. For instance, a 

"revenue neutral" mix of segment fee increases and percentage ticket tax reductions 

could be tested. 
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Results of fare experiments are shown in Figure 4.4. As expected, increased fares 

result in losses of system traffic volumes, including those both on direct and connecting 

routes. This shows the value of including the non-air alternative in the models: without it 

changes in traffic of direct routes would have opposite signs. For example, in the cases of 

increased fares, the models would predict traffic increases on direct routes, if non-air was 

not considered as an alternative. 
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Figure 4.4 Results of Fare Experiments 
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Comparing results of different scenarios within the same model form, the changes 

in traffic increase slightly less than proportionally, as fare changes increase. For instance, 

according to NL3B estimates, the air systems are expected to lose 5.1 and 10.1 million 

passengers if fares increase $2 and $4 per segment, respectively. 

The predicted total traffic changes from the MNL-IV model are larger than those 

from the NL3B model. This can also be seen from the market demand elasticities with 

respect to fare (Table 4.1 and Figure 4.1). Second, while the MNL-IV model predicts 

larger (about 1.6 times) traffic changes on direct routes than on connecting routes, the 

NL3B-IV model yields almost equal traffic changes on both routing types. Recall that the 

estimated scale parameters (in Table 3.8) have confirmed that potential passengers are 

more likely to switch from connecting routes to direct route than to non-air alternative. 

Although direct routes lose their original traffic volumes to the non-air alternative, they 

gain traffic volumes from connecting routes instead, because fare changes of connecting 

routes are larger. Thus, the MNL-IV model very likely overestimates64 (in absolute value) 

the traffic changes on direct routes due to the IIA assumption. 

64 This argument can be more directly supported by delay experiments (in section 4.2.2), 
in which utilities of direct routes are not affected by hub delays at all. 
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4.2.2 Delay Experiments 

A tremendous amount of money has been and will be spent on improvements of air 

transportation systems. Delay reduction is one of the improvement measures. Applying 

the proposed model, benefits of delay reductions, which are important for justifying the 

investments, can be quantified. In this section, two delay experiments are performed to 

demonstrate how the model can be used to evaluate impacts of delay changes. 

The first one considers the case of system delay changes of all 30 hub 

airports—all connecting routes are influenced by the changes. A practical example of this 

case is system improvements, such as the Next Generation Air Transportation System 

(NextGen) program, on all benchmark airports. The second delay experiment focuses on 

delay changes at a specific hub airport—using Chicago O'Hare International Airport 

(ORD) as an example. The planned airport capacity enhancement at ORD may result in 

this. The model can also be used to evaluate the system-wide effects of the project, not 

only the impacts on ORD. 

According to the specifications and the estimated results, quarterly demand levels 

of year 2004 depend on quarterly hub delays of year 2003 and 2004. Thus, for each 

scenario, a percentage change of 2003 and 2004 hub delay is set. Four scenarios are 

examined in each experiment: 25 and 50 percent increases and decreases in original hub 

delay. Changes in air passenger traffic volumes and their components are also used to 

assess the impacts. 
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System Case 

Figure 4.5 shows the system impacts of the delay changes of all 30 hub airports. As 

expected, increased (decreased) hub delay lead to losses (gains) of connecting passengers. 

In addition, the losses (gains) change to/from increased (decreased) direct traffic volumes 

and/or non-air potential traffic. Comparing results of the same magnitude of delay 

changes within the same model form, delay reductions have slightly larger effects on 

system traffic volumes than delay raises. 
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Figure 4.5 Results of System Delay Experiments 
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More importantly, the results again show the value of incorporating the non-air 

alternative and the more reasonable substitution patterns of the NL model. Without the 

non-air alternative, the models, including both MNL-IV and NL3B-IV, would predict 

much more passengers changing from connecting routes to direct routes in the cases of 

hub delay increases. While the estimated scale parameters (in Table 3.8) indicate that 

connecting routes are more likely to be substituted by direct routes than by the non-air 

alternative, the results of the MNL-IV model show that most substitutions are between 

connecting routes and the non-air alternative—the changes in direct traffic volumes are 

too small to be seen in Figure 4.5. This can be explained by cross elasticity of market 

share of alternatives. Referring to Equation (2.4), the substitution of alternatives in MNL 

models depends on market shares of alternatives. Because the non-air alternative has a 

very large market share, compared to those of air routes, in each market, it more likely 

substitutes for air routes. 

Chicago O'Hare International Airport (ORD) Case 

This experiment shows the system impacts of delay changes from a single airport. 

Scenarios include delay increases and decreases. The effects—which are measured in 

changes in traffic volumes of markets associated with ORD65—on both ORD and the rest 

of the system are of interest in this experiment. 

The changes in traffic volumes are decomposed into four categories: (1) passengers 

connecting at ORD, (2) passengers connecting at the other 29 hub airports, (3) passengers 

65 A market is considered as associated with ORD if it is served by one or more routes 
connecting at ORD. 
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choosing direct routes, and (4) passengers choosing the non-air alternative. As shown in 

Figure 4.6, the predictions of the MNL-IV model show that the ORD delay changes 

mainly affect the connecting traffic volumes of ORD and the non-air alternative, but do 

not significantly affect the rest of the air system. This is similar to the results of the 

system delay case, and can be explained by cross elasticity of market share of 

alternatives. 
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On the other hand, the results from NL3B-IV model are more sensible: more than 

half of the changes in ORD traffic volumes correspond to the traffic changes of other 

hubs and/or direct routes. Changes in traffic volumes of other hubs are about 2.3 times 

larger than those of direct routes. The routes with ORD as a connecting airport, thus, are 

more likely to substitute for (or to be substituted by) other connecting routes than for (by) 

direct routes. However, this substitution pattern is not due to nesting structures of models, 

which do not differentiate connecting and direct routes. Rather main reason for this 

substitution pattern is that for the majority of the markets associated with ORD, the total 

market share of connecting routes in a market is larger than that of direct routes. 

If a proposed project is expected to reduce the current delay of ORD by 25%, the 

NL3B-IV model predicts an increase of 422 thousand connecting passengers (about 4.5% 

of the original connecting volume) annually at ORD. The increased volume of traffic is 

from three sources: (1) 68 thousand passengers change from direct routes to routes 

connecting through ORD ; (2) about 155 thousand passengers are attracted from the other 

29 hubs; and (3) 200 thousand passengers are from the potential travelers who chose 

other modes or did not travel. From the viewpoint of the whole air system, the net effect 

is an increase of 200 thousand passengers. 

4.2.3 Summary and Discussions of Policy Experiments 

As the policy experiments demonstrate different applications of the model, they 

also show the importance of incorporating the non-air alternative in the model and the 

more realistic substitution patterns of the NL model. Although both the MNL-IV and 

NL3B-IV estimates may yield reasonable values-of-time and own- elasticities of demand, 
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only the NL3B-IV estimates provide sensible substitution patterns among alternatives. In 

addition, empirical studies using MNL models without the non-air alternative may 

overlook the unreasonable substitution patterns, because the market share differences 

among alternatives are smaller than those of MNL models with the non-air alternative66. 

The above policy experiments are conducted under the assumption that no routes 

are generated (or eliminated) from these scenarios67. Thus, all substitutions are between 

existing routes. This assumption may be reasonable (or cause fewer inaccuracies) for 

short term planning purposes. For long term planning, the possibilities of network 

changes should be taken into account. In such cases, predicted independent variables are 

needed as the inputs for the model. 

66 According to Equation (2.4), the substitution of alternatives in MNL models depends 
on market shares of alternatives. Because the non-air alternative has a very large 
market share, compared to those of air routes, in each market, it more likely substitutes 
for air routes. As a result, the unreasonable substitution patterns are more likely to be 
observed if the non-air alternative is included in the choice set. 

67 Additionally, in each scenario only one supply variable is changed, other supply 
variables, such as frequency, are unchanged. 
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4.3 Structural Changes over Time 

In this section structural changes over time are investigated. As discussed in 

chapter 3, fare and frequency are major determinants of air demand. Structural changes 

related to these two factors, thus, are the focus of the investigation. In particular, the 

hypothesis that fare sensitivity has increased and frequency sensitivity has (relatively) 

decreased is tested. It is important to examine the stability of the structure of air travel 

demand. For example, if the hypothesis is true but ignored, we may underestimate the 

fare effects and overestimate the values of frequency. This may mislead about charge 

schemes and investments on capacities. 

Possible reasons for the structural changes over the data period (1995-2004) 

include growth of e-commerce and emergence of low cost carriers. Rapid development of 

the Internet and its applications may affect the structure of airline service demand since 

they significantly increase availability of travel information and change ticket distribution. 

The easy availability of travel information broadens potential travelers' choice sets and 

also helps potential travelers make better informed decisions. Potential travelers can, for 

example, effortlessly compare many alternatives (different routes, airlines, fare, travel 

time, etc.) side by side through a single website. Through conventional distribution 

channels, such as travel agents, potential travelers may see less information and thus 

consider fewer alternatives. For instance, potential travelers may not ask for cheaper 

tickets if their agents already provide acceptable deals. Also, agent commission policies 

sometimes created incentives for agents to sell more expensive fares. 
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The internet effects may lead to changes in observed travelers' sensitivities to route 

characteristics, since potential travelers can consider larger choice sets and do so more 

knowledgeably than before. Sensitivity to fare is expected to increase, because the 

majority of potential travelers search for low fares online and most internet-based 

channels provide alternatives sorted by fare68—from low to high. Frequency, on the other 

hand, plays a more important role in conventional channels, in which the passengers opt 

for higher frequency options as a means of reducing search costs, than in internet-based 

channels. Therefore, we expect fare sensitivity to have increased and frequency 

sensitivity to have decreased over the data period. 

Structural changes may also have resulted from the emergence of low cost carriers. 

When potential travelers know that low cost carrier services are available, they may be 

encouraged to search for lower fares. For example, they may consider alternative origin 

and/or destination airports that are served by low cost carriers. The effects of low cost 

carriers become larger when combined with the internet effects, due to lower search 

costs. 

4.3.1 Estimation Results and Discussion 

In order to examine the structural changes of air demand, the preferred model 

(NL3B-IV) is repeatedly estimated by using different annual data sets, which are subsets 

Some online travel agents, such as Expedia, even provide fare alert services, which 
may make potential travelers more sensitive to fare, and/or attract more price sensitive 
potential travelers. 
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of the original panel data set and are shorter panel (only four quarters) data sets. For 

comparison purpose, the same procedure is implemented for the NL3B-OLS model. The 

annual estimation results of the NL3B-OLS and the NL3B-IV models are presented in 

Table 4.4 and Table 4.5, respectively. Note that the annual estimation of year 1995 is not 

performed since the lag delay variables are specified in the models and the delay 

variables of year 1994 are unavailable. Therefore, there are nine annual estimation results, 

from column (1) to column (9) in each table. Estimation results of the whole panel data 

set are also duplicated from Table 3.8 and added into column (10) of both tables for 

comparison. 

It is worth mentioning that the differences between two sets of annual estimates 

(OLS vs. IV) are similar to those between the two whole panel estimates. For both annual 

and panel estimates, the OLS method tends to lead to smaller (in absolute value) fare 

coefficient(s) and larger ratio(s) of scale parameters (Xp I Xa ) than those from the IV 

method. As discussed in section 3.4 and 4.1, while the estimates from the OLS method 

imply unreasonable high VOTs, low (in absolute value) fare elasticities, and low 

correlations between air routes, the estimates from the IV method suggest more sensible 

VOTs, fare elasticities, and correlations. The IV estimates, therefore, are preferred and 

further discussed. 
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Table 4.4 Annual Data Estimation Results—NL3B-OLS Estimates 

Variable 
Fare 
(hundreds of 2004 dollars) 
ln(Frequency)—Direct 
(flights per quarter) 
ln(Max frequency of two 
segments)— Connecting 
ln(Min frequency of two 
segments)— Connecting 
Scheduled flight time— 
Direct (minutes) 
Scheduled flight time— 
Connecting (minutes) 
Dummy for direct routes 
(=1, if direct route) 
Positive hub arrival 
delay t-i (min. per flight) 

Positive hub arrival 
delay t-4 (min. per flight) 

Inclusive value of level 3 
(parameter^ Xp 1 Xa) 

Inclusive value of level 2 
(parameter= Xa 1 Am) 

Inclusive value of level 2 
*market distance 
Market distance 
(hundreds of miles) 
ln(market distance) 

Per capita personal income 
of market (thousands of 
2004 dollars) 
Constant (level 1) 

(1) 
1996 

-0.183"' 
[0.008] 
1.292*" 
[0.02a 
0.474*" 
[0.016] 
0.818"* 
[0.0131 

-0.021 
[0.0001 

-0.020 
[0.000] 
4.782*** 
[0.216] 

-0.009*** 
[0.002] 
0.008 
[0.003] 

0.913*** 
[0.014] 

0.678*** 
[0.011] 

-0.007*** 
[0.001] 
0.015** 
[0.005] 

1 779*** 
[0.057] 
0.011* 
[0.004] 

-16.873*** 
[0.153] 

(2) 
1997 

-0.165*" 
[0.008] 
1.321*" 
[0.022] 
0.453*** 
[0.016] 
0.786*** 
[0.012] 

-0.020* 
[0.000] 

-0.019*" 
[0.000] 
4.136*" 
[0.243] 
0.005 

[0.003] 
0.007 
[0.002] 

0.893*** 
[0.016] 

0.749*** 
[0.010] 

-0.009*** 
[0.001] 
0.011* 
[0.005] 

1 921*** 
[0.057] 
-0.004 
[0.004] 

-16.641*** 
[0.1421 

(3) 
1998 

-0.153*** 
[0.008] 
1.335*** 
[0.025] 
0.471*** 
[0.015] 
0.832*** 
[0.0121 

-0.021** 
[0.000] 

-0.020 
[0.000] 
4.006*** 
[0.236] 
-0.002 
[0.002] 

-0.015 
[0.003] 

0.897*** 
[0.014] 

0.749*** 
[0.009] 

-0.009*** 
[0.001] 

0.015*** 
[0.004] 

1.934*** 
[0.055] 
-0.004 
[0.004] 

-16.622*** 
[0-1351 

(4) 
1999 

-0.145"* 
[0.010] 
1.327*" 
[0.023] 
0.468*** 
[0.016] 

0.831*** 
[0.012] 

-0.020* 
[0.000]^ 

-0.019 
[0.000] 
4.387 
[0.229] 
-0.002 
[0.002] 
-0.005 
[0.002] 

0.899*** 
[0.016] 

0.751*** 
[0.010] 

-0.010*** 
[0.001] 

0.020*** 
[0.005] 

1.907*** 
[0.053] 
0.008* 
[0.003] 

-17.219*** 
[0.131] 

(5) 
2000 

-0.138*** 
[0.007] 
1.334*** 
[0.026] 
0.512*" 
[0.014] 
0.833"* 
[0.0111 

-0.020 
[0.0001 

-0.019* 
[0.000] 
4.415*** 
[0.229] 
0.001 

[0.001] 
-0.004 
[0.002] 

0.933*** 
[0.014] 

0.736*** 
[0.009] 

-0.008*** 
[0.001] 

0.034*** 
[0.005] 

1.824*** 
[0.056] 
0.005 

[0.003] 

-17.508*** 
[0.134] 
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Table 4.4 Annual Data Estimation Results—NL3B-OLS Estimates (Continued) 

Variable 
Fare 
(hundreds of 2004 dollars) 
ln(Frequency)—Direct 
(flights per quarter) 
ln(Max frequency of two 
segments)— Connecting 
ln(Min frequency of two 
segments)— Connecting 
Scheduled flight time— 
Direct (minutes) 
Scheduled flight time— 
Connecting (minutes) 
Dummy for direct routes 
(=1, if direct route) 
Positive hub arrival 
delay t-i (min. per flight) 

Positive hub arrival 
delay t-4 (min. per flight) 

Inclusive value of level 3 
(parameter^ X 1 Xa) 

Inclusive value of level 2 
(parameter^ Xal Xm) 

Inclusive value of level 2 
* market distance 
Market distance 
(hundreds of miles) 
ln(market distance) 

Per capita personal income 
of market (thousands of 
2004 dollars) 
Constant (level 1) 

(6) 
2001 

-0.153 
[0.006] 
1.350*" 
[0.021] 
0.450"* 
[0.014] 
0.822*** 
[0.010] 

-0.019 
[0.000] 

-0.018*" 
[0.000] 
4.108*" 
[0.205] 
0.004 

[0.003] 
-0.005** 
[0.002] 

0.937*** 
[0.015] 

0.712*** 
[0.009] 

-0.007*** 
[0.001] 

0.031*** 
[0.005] 

1.833*** 
[0.052] 
0.006 

[0.003] 

-17.443*** 
[0.133] 

(7) 
2002 

-0.154"* 
[0.007] 
1.372*** 
[0.021] 
0.431*** 
[0.015] 
0.833*** 
[0.011] 

-0.019 
[0.000] 

-0.018 
[0.000] 
3.438*" 
[0.205] 
0.010* 
[0.004] 

-0.016 
[0.003] 

0.955*** 
[0.019] 

0.686*** 
[0.009] 

-0.007*** 
[0.001] 

0.024*** 
[0.005] 

1.856*** 
[0.057] 
0.008* 
[0.004] 

-17.246*** 
[0.1421 

(8) 
2003 

-0.159"* 
[0.008] 
1.371*** 
[0.021] 
0.459*** 
[0.016] 
0.847*** 
[0.011] 

-0.018 
[0.0001 

-0.018 
[0.000] 
3.688*** 
[0.216] 
0.002 

[0.003] 
0.003 

[0.003] 
0.964*** 
[0.017] 

0.640*** 
[0.010] 

-0.005*** 
[0.001] 
0.017** 
[0.006] 

1 778*** 
[0.061] 

0.018*** 
[0.004] 

-17.486*** 
[0.150] 

(9) 
2004 

-0.188*** 
[0.008] 
1.391*** 
[0.022] 
0.447*** 
[0.014] 
0.863*** 
[0.0101 

-0.016 
[0.000] 

-0.018 
[0.000] 
3.167"* 
[0.208] 
-0.002 
[0.0021 
-0.005 
[0.002] 

0.939*** 
[0.019] 

0.654*** 
[0.011] 

-0.006*** 
[0.001] 
0.011 

[0.006] 
j 794*** 
[0.064] 

0.022*** 
[0.003] 

-17.336*** 
[0.149] 

(10) 
Panel 

-0.160*** 
[0.005] 
1.337*** 
[0.016] 
0.440*** 
[0.009] 
0.822*** 
[0.0071 

-0.019 
[0.000] 

-0.019 
[0.000] 
3.874*** 
[0.141] 
-0.002** 
[0.001] 
-0.002** 
[0.001] 

0.937*** 
[0.011] 

0.71 J*** 
[0.009] 

-0.008*** 
[0.001] 

0.018*** 
[0.005] 

1.888*** 
[0.048] 

0.015*** 
[0.003] 

-17.316*** 
[0.1161 

Notes: (1) Standard errors in brackets are robust to heteroskedasticity, serial correlation 

and market cluster effects; (2) * p < 0.05, ** p < 0.01, *** p< 0.001; (3) All 

regressions include hub dummy variables for connecting routes, origin and 

destination airport dummy variables for MASs, and quarter dummy variables for 

time fixed effects. 
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Table 4.5 Annual Data Estimation Results—NL3B-IV Estimates 

Variable 
Fare 
(hundreds of 2004 dollars) 
In(Frequency)—Direct 
(flights per quarter) 
ln(Max frequency of two 
segments)— Connecting 
ln(Min frequency of two 
segments)— Connecting 
Scheduled flight time— 
Direct (minutes) 
Scheduled flight time— 
Connecting (minutes) 
Dummy for direct routes 
(=1, if direct route) 
Positive hub arrival 
delay t-i (min. per flight) 

Positive hub arrival 
delay t-4 (min. per flight) 

Inclusive value of level 3 
(parameter=Ap//la) 

Inclusive value of level 2 
(parameter Xa 1 Xm) 

Inclusive value of level 2 
* market distance 
Market distance 
(hundreds of miles) 
ln(market distance) 

Per capita personal income 
of market (thousands of 
2004 dollars) 
Constant (level 1) 

(1) 
1996 

-0.981*** 
[0.116] 
1.202"* 
[0.032] 
0.631*" 
[0.029] 
0.922*** 
[0.020] 

-0.011 
[0.001] 

-0.010 
[0.001] 
6.477*** 
[0.382] 
-0.010 
[0.004] 
0.005 

[0.005] 
0.602*** 
[0.018] 

0.729*** 
[0.010] 

-0.009*** 
[0.001] 
-0.008 
[0.004] 

1.651*** 
[0.052] 

0.019*** 
[0.004] 

-16.631*** 
[0.1381 

(2) 
1997 

-1.017*" 
[0.126] 
1.275*** 
[0.028] 
0.603*** 
[0.032] 
0.906*** 

t°-021L 
-0.010 
[0.001] 

-0.010*** 
[0.001] 
5.744*** 
[0.377] 
0.001 

[0.005] 
0.009* 
[0.005] 

0.617*** 
[0.021] 

0.749*** 
[0.009] 

-0.010*** 
[0.001] 

-0.018*** 
[0.005] 

1.724*** 
[0.054] 

0.021*** 
[0.003] 

-16.662*** 
[0.1321 

(3) 
1998 

-1.044*** 
[0.124] 
1.281*** 
[0.035] 
0.642*** 
[0.030] 
0.957*** 
[0.026] 

-0.009* 
[0.001] 

-0.010*** 
[0.001] 
6.199*" 
[0.399] 
-0.002 
[0.005] 
-0.007 
[0.005] 

0.587*** 
[0.018] 

0.776*** 
[0.009] 

-0.010*** 
[0.001] 
-0.009 
[0.005] 

1.681*** 
[0.052] 
0.010** 
[0.003] 

-16.559*** 
[0.1291 

(4) 
1999 

*** 
-1.414 [0.232] 
1.289*" 
[0.037] 
0.726*** 
[0.055] 
1.056*** 
[0.048] 
-0.005 
[0.003] 
-0.006** 
[0.002] 
7.584*** 
[0.682] 
-0.008 
[0.005] 
0.008 

[0.006] 
0.596*** 
[0.018] 

0.820*** 
[0.012] 

-0.013*** 
[0.001] 
-0.013* 
[0.006] 

1.619*** 
[0.051] 

0.028*** 
[0.003] 

-17.007*** 
[0.127] 

(5) 
2000 

-0.941*** 
[0.099] 
1.312*** 
[0.036] 
0.677*** 
[0.026] 
1.007"* 
[0.024] 

-0.009* 
[0.001] 

-0.010*** 
[0.001] 
6.388"* 
[0.3461 

-0.011*** 
[0.0031 
-0.008 
[0.004] 

0.599*** 
[0.023] 

0 77J*** 
[0.009] 

-0.009*** 
[0.001] 
0.012* 
[0.005] 

1.547*** 
[0.053] 

0.011*** 
[0.003] 

-17.170*** 
[0.1241 
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Table 4.5 Annual Data Estimation Results—NL3B-IV Estimates (Continued) 

Variable 
Fare 
(hundreds of 2004 dollars) 
ln(Frequency)—Direct 
(flights per quarter) 
ln(Max frequency of two 
segments)— Connecting 
ln(Min frequency of two 
segments)— Connecting 
Scheduled flight time— 
Direct (minutes) 
Scheduled flight time— 
Connecting (minutes) 
Dummy for direct routes 
(=1, if direct route) 
Positive hub arrival 

delay t-i (min. per flight) 
Positive hub arrival 
delay t-4 (min. per flight) 

Inclusive value of level 3 
(parameter^ Xp 1 Xa) 

Inclusive value of level 2 
(parameter= Xa 1 Xm) 

Inclusive value of level 2 
* market distance 
Market distance 
(hundreds of miles) 
ln(market distance) 

Per capita personal income 
of market (thousands of 
2004 dollars) 
Constant (level 1) 

(6) 
2001 

-0.832"" 
[0.096] 
1.370*" 
[0.026] 
0.611"* 
[0.029] 
0.947*" 
[0.021] 

-0.011 
[0.0011 

-0.011 
[0.001] 
5.809*** 
[0.345] 
0.007 

[0.004] 
-0.002 
[0.002] 

0.640*** 
[0.030] 

0.730*** 
[0.009] 

-0.007*** 
[0.001] 
0.012* 
[0.005] 

1.608*** 
[0.050] 
0.005 

[0.003] 

-17.166*** 
[0.1311 

(7) 
2002 

*** 
-1.528 [0.291] 
1.308*** 
[0.035] 
0.627*** 
[0.049] 
0.981*" 
[0.038] 
-0.005 
[0.003] 
-0.007** 
[0.002] 
6.137*" 
[0-680] 
0.028 
[0.010] 
-0.017** 
[0.006] 

0.718*** 
[0.033] 

0.764*** 
[0.010] 

-0.008*** 
[0.001] 
-0.007 
[0.006] 

1.496*** 
[0.053] 
0.003 

[0.003] 

-16.147*** 
[0.1311 

(8) 
2003 

-1.572 
[0.204] 
1.307*" 
[0.030] 
0.621*** 
[0.031] 
0.953*** 
[0.022] 

-0.007 
[0.002] 

-0.009* 
[0.001] 
5.629*** 
[0.401] 
0.014* 
[0.006] 
0.012 

[0.006] 
0.765*** 

[0.019] 

0.718*** 
[0.010] 

-0.006*** 
[0.001] 
-0.011 
[0.006] 

1.525*** 
[0.057] 

0.015*** 
[0.003] 

-16.309*** 
[0.132] 

(9) 
2004 

-2.247*" 
[0.387] 
1.252*** 
[0.042] 
0.690*** 
[0.054] 
0.956*** 
[0.024] 
-0.003 
[0.003] 
-0.006** 
[0.002] 
5.367*" 
[0.613] 

-0.027* * 
[0.007] 
-0.013 
[0.006] 

0.780*** 
[0.018] 

0.734*** 
[0.013] 

-0.009*** 
[0.001] 

-0.042*** 
[0.007] 

1.534*** 
[0.060] 

0.029*** 
[0.003] 

-15.425*** 
[0.129] 

(10) 
Panel 

-1.546"* 
[0.206] 
1.240*** 
[0.029] 
0.627*** 
[0.030] 
0.957*** 
[0.023] 
-0.004 
[0.002] 
-0.006** 
[0.002] 
6.066*** 
[0.397] 

-0.006*** 
[0.002], 

-0.007 
[0.002] 

0.664*** 
[0.014] 

0.795*** 
[0.010] 

-0.012*** 
[0.001] 

-0.024*** 
[0.005] 

1 275*** 
[0.046] 

0.038*** 
[0.003] 

-16.229*** 
[0.102] 

Notes: (1) Standard errors in brackets are robust to heteroskedasticity, serial correlation 
and market cluster effects; (2)*p< 0.05, **p < 0.01, ***/?< 0.001; (3) All 
regressions include hub dummy variables for connecting routes, origin and 
destination airport dummy variables for MASs, and quarter dummy variables for 
time fixed effects. 
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As listed in Table 4.5, annual coefficients of the NL3B-IV model fluctuate over 

time. However, direct comparisons between these coefficients may be inappropriate since 

their values may be affected by scale parameters, which are also different over time. 

Demand elasticities with respect to these variables and ratios of coefficients can be used 

to describe the structural changes over time. Whereas no specific time trends for 

scheduled flight time and market distance effects are found, structural changes related to 

delay and income are apparent. Sensitivities to fare and frequency are further investigated 

in the next section. 

Only one-third (6 out of 18) of the estimated delay coefficients from the annual 

data have the expected sign and significant different from zero, even though negative 

delay impacts on route demand are confirmed by the whole panel data. More than half 

(10 out of 18) of these coefficients are not significant. This indicates that delay effects are 

mainly observed in a multi-year data set containing greater variation in delay. As shown 

in Figure 4.7, the annual estimates of delay coefficients may be negative (such as the 

results of year t-1 and t+1) or positive (e.g. the result of year t), and they may not 

statistically significant. When there is enough variation, however, the negative delay 

impact on route demand becomes apparent. 
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Figure 4.7 Delay Effects on Air Route Demand 

While no specific time trends for income coefficients and elasticities can be 

observed, the annual estimates give lower income coefficients and elasticities than those 

from the panel estimates. For instance, the median69 of income elasticities calculated 

from the annual estimates ranges from 0.09 (year 2002) to 0.97 (year 2004), and that 

calculated from the panel estimates is 1.21. This suggests that time-series variation of 

income has a larger impact on air demand than cross-sectional variation of income does, 

since the annual data sets are dominated by cross-sectional variation. 

Other quantiles of these elasticities are also consistent with the finding, although only 
medians of income elasticities are presented here. In addition, the income elasticities 
weighted by number of passengers are consistent with the finding as well. 
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Although all income coefficients have expected signs (positive), those of the year 

2001 and 2002 are not significantly different from zero. This indicates that markets with 

higher income levels do generate more air trips for most time periods, but the income 

effect becomes negligible in year 2001 and 2002. The September 11, 2001 attacks could 

be a reason for the temporally weakened income effect, perhaps because it weakened 

demand for discretionary travel affordable to the more affluent. 

4.3.2 Sensitivities to Fare and Frequency 

In this section, the hypothesis that fare sensitivity has increased relative to 

frequency sensitivity is tested first, and then structural changes related to individual 

variables are discussed. For the hypothesis test, the ratios of fare coefficient to frequency 

coefficients are plotted in Figure 4.8, in which panel (a) and panel (b) show the results of 

the NL3B-OLS and the NL3B-IV models, respectively. Using year 2000 as the base year, 

a coefficient ratio of a specific year is tested against its counterpart of year 2000. When 

the ratio is significantly (p-value<0.05) different from its counterpart of year 2000, it is 

presented with a larger marker. For instance, in year 2003, the coefficient ratio of fare to 

maximum frequency is about -2.5, which is statistically different from its counterpart of 

year 2000 (about-1.4). 
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As shown in Figure 4.8, the ratios fluctuate over time, and the three ratios in the 

same panel have similar patterns—they increase or decrease simultaneously, mainly 

because the coefficients of frequency are more stable than those of fare. The OLS 

estimates indicate that (1) the ratios increase first and then decrease after year 2000; (2) 

the ratios of year 2004 are close to those of year 1996. Nevertheless, OLS estimates may 

encounter the endogeneity problem of fare and as a result underestimate (in absolute 

value) fare coefficients. The preferred IV estimates show that the ratios are stable before 

year 2001, except for those of year 1999, and decrease after year 2001. That is, the 

relative sensitivities do not significantly change in the earlier time periods, but do 

increase in the later periods. 

Although the results of OLS and IV estimates are inconsistent before year 2000, 

they both suggest that fare sensitivity has increased relative to frequency sensitivity 

starting in 2001. As discussed in the beginning of section 4.3, the sensitivity changes may 

result from the effects of the Internet and low cost carriers. However, this research does 

not further isolate these effects, leaving this for future research. 

Structural changes related to each variable were further investigated by comparing 

route demand elasticities with respect to these variables. Medians of these demand 

elasticities from the preferred NL3B-IV estimates are plotted in Figure 4.9, from which 

larger fluctuations of fare elasticities than those of frequency elasticities can be observed. 

This is mainly because of the relatively stable frequency coefficients. 
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Figure 4.9 Medians of Route Demand Elasticities 

The fare elasticities suggest that potential travelers became more sensitive to fare 

after the year 2001. Although only unweighted fare elasticities of route demand are 

presented here, trends of weighted fare elasticities of route demand, and both weighted 

and unweighted fare elasticities of market demand were also examined and found to 

exhibit a similar trend. In addition, the changes of the median fare elasticities have 

patterns similar to the changes in coefficient ratios of fare to frequency, shown in Figure 

4.8 (b). These changes are thus driven largely by increases in fare sensitivity. 
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Although frequency elasticities are relatively stable over time, an upward trend of 

the demand elasticities with respect to frequency of direct routes can be observed. The 

median grows from 0.62 (year 1996) to 0.84 (year 2004). This suggests that potential 

travelers became more and more sensitive to frequency of direct routes over the study 

period. 

It is worth mentioning that although only median elasticities are presented here, 

other quantiles and means of elasticities with respect to fare and frequency were also 

checked. All the findings from the alternative elasticities are consistent with those from 

the median elasticities. 
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Chapter 5 Conclusions and Recommendations 

This chapter concludes this research by summarizing the methodological 

contributions and empirical findings of the research. Moreover, recommendations for 

future work are discussed. 

5.1 Conclusions 

By reviewing the literature on air travel demand, this research finds that current 

understanding of the demand is lacking in several significant ways: (1) Most existing 

models only deal with either demand generation or demand assignment, or apply these 

two types of models sequentially; (2) The "induced" air travel is not captured by most 

existing models; (3) How the relative importance of causal factors change over time is 

seldom studied; (4) The pattern of correlations among different alternatives is not well 

understood; and (5) Effects of on-time performance and market distance are 

under-investigated. In order to fill the gaps, this research develops a city-pair air demand 

model and applies it to the air transportation system of the United States. The main 

methodological contributions and empirical findings are discussed below. 

5.1.1 Methodological Contributions 

The proposed model improves existing models by adding preferred features and 

using an appropriate estimation method. The main methodological contributions are 

listed as follows. 
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• The model can handle activities at a low aggregation level (route level), and can be 

applied to a large network system. As demonstrated in chapter 3 and 4, the model is 

applied to the air transportation system of the United States, and serves as a bottom-up 

policy analysis tool for different scenarios. System impacts of changes in specific route 

elements, such as airports or segments, can be evaluated. 

• The model deals with demand generation and demand assignment in a single model, 

and quantifies the "induced" air travel by adding a non-air alternative in the choice set. 

Thus, a change in a causal factor, such as a fare increase, may influence both total air 

demand and market shares of alternatives. With the non-air alternative, total air 

demand is allowed to vary and potential travelers are not forced to choose one of the 

air alternatives. 

• Both multiple routes and multiple airport regions are considered in the model. This 

leads to more complete choice sets, which are closer to what potential travelers can 

choose from when they plan to travel between two cities. 

• The model is able to investigate different patterns of correlations among alternatives. 

• Using panel data, the model captures both time series and cross-sectional variation of 

air travel demand. In addition, the stability of the structure of air travel demand is 

examined. The panel data employed is publicly available and collected on a regular 

basis so the model can be regularly updated. 

• Effects of fare, frequency, scheduled flight time, direct routing, on-time performance, 

income, and market distance on air demand are quantified. Demand elasticities with 

respect to these causal factors are calculated. 
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• While most existing air demand models ignore the endogeneity problem of air fare, this 

research applies the instrumental variables (IV) method to solve the problem. The 

proposed instrumental variable for air fare is a cost side variable and is defined as the 

product of the route distance and unit jet fuel cost. 

5.1.2 Empirical Findings 

Based on the results of chapter 3 and 4, main empirical findings, including model 

forms, estimation methods, the assumption of saturated demand, effects of causal factors, 

and structural changes over time, are summarized as follows. 

Structure of Correlations for Airline Service Alternatives and Estimation Methods 

The pattern of correlations among alternatives is explicitly captured by applying the 

three-level nested logit (NL3B) model, which is the highest-level nested logit model 

consistent with utility maximization. Other lower-level nested logit and multinomial logit 

models are special cases of the NL3B model. The structure of the NL3B model implies 

that a route is more likely to compete with another route of the same O-D airport pair 

than the routes of the other O-D airport pairs, and is least likely to be substituted by the 

non-air alternative. 

The three-level nested logit model estimated by instrumental variable method 

(NL3B-IV) is the preferred model for two reasons. First, the NL3B models confirm the 

non-homogeneous correlations among alternatives, implying that the MNL models have 

unreasonable substitution patterns among alternatives. Second, the IV estimates infer 

more sensible values-of-time, demand elasticities, and correlations of total utilities for 
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alternatives than those of ordinary least squares (OLS) method. Due to endogeneity 

problem, the fare coefficient estimated by OLS is biased towards zero. Thus, the inferred 

fare elasticities and values-of-time are underestimated and overestimated, respectively. In 

addition, the ratios of scale parameters estimated by OLS method are also biased. This 

leads to unreasonable low correlations among air routes sharing the same O-D airport 

pair. 

As the policy experiments demonstrate different applications of the model, they 

also numerically show the importance of incorporating the non-air alternative in the 

model and the more realistic substitution patterns of NL model. Although both the 

MNL-IV and NL3B-IV estimates yield reasonable values-of-time and own-elasticities of 

demand, only the NL3B-IV estimates provide sensible substitution patterns among 

alternatives. 

Saturated Demand 

In order to implement the proposed model, this research assumes that saturated 

demand is 10 times the geometric mean of the city-pair population. Sensitivity tests of 

this assumption confirm that the setting of the saturated demand only affect the estimated 

intercept of the market share model if the proportionality factor is set large enough. 

Fare 

The empirical analysis suggests that air fare is endogenous and correcting the 

endogeneity problem by the IV method significantly improves the fare coefficient and its 

implications. The distributions of the fare elasticities (both of route and market demand) 

clearly show that estimation methods (OLS versus IV) create much larger differences of 
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fare elasticities than model forms (MNL versus NL3B) do. In addition, for almost all 

routes, whereas the unweighted fare elasticities from the OLS estimates suggest that route 

demand is inelastic to fare, those from the IV estimates imply that route demand is fare 

elastic. At market level, the fare elasticities from the OLS estimates indicate inelastic 

market demand, but the unweighted fare elasticities from the IV estimates imply that for 

the majority of markets (about 74% of markets according to the NL3B-IV estimates), air 

demand is fare elastic. 

The fare elasticities from the NL3B-IV estimates are better supported by findings in 

the literature. As shown in Figure 4.2, the distributions of market demand elasticities 

calculated from the NL3B-IV estimates and other studies—summarized by Gillen et al 

(2002)—are very close, especially for larger absolute elasticities (smaller percentiles). 

For example, the 1st quantile and median calculated from the NL3B-IV estimates are 

-1.54 and -1.23, and those from Gillen et al (2002) are -1.52 and -1.15, respectively. 

Flight Frequency 

Although all estimated frequency coefficients indicate that potential travelers prefer 

routes with high flight frequency, marginal effects of different frequency variables are 

different. The results confirm the hypothesis that the minimum frequency is more critical 

to the connecting service, and thus a proportional flight frequency increase on the 

segment with lower frequency increases service attractiveness more than an equivalent 

change on higher frequency segment. 
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Scheduled Flight Time 

Although all coefficients of scheduled flight time indicate that travelers prefer 

routes with shorter scheduled flight time, only the IV estimates suggest significantly 

different marginal effects for different routing types. The IV estimates imply larger VOTs 

for connecting routes than for direct routes. According to the NL3B-IV estimates, the 

inferred values of scheduled flight time are $16.6/hour for direct routes and $24.1/hour 

for connecting routes, both in 2004 dollars. These values are in the same order as those 

reported in the literature. In addition, the elasticities calculated from the NL3B-IV 

estimates suggest that shortening one percent of scheduled flight time is expected to 

increase route demand by more than one percent for connecting routes, but less than one 

percent for direct routes. 

On-Time Performance 

In IV estimations, positive hub arrival delay of one and four quarters before the 

decision quarter are the only significant delay variables, although many on-time 

performance metrics were tried. When choosing among connecting routes, travelers avoid 

connecting at airports with high expected delay in certain seasons. 

The coefficient differences between these two hub delay variables are not 

statistically significant, implying that potential travelers weigh one-time performance of 

the two periods equally. In addition, we expect that under steady state, a one-minute hub 

delay increase has a larger impact on demand than an equivalent change in scheduled 

flight time of a connecting route. The NL3B-IV estimates confirm this hypothesis: the 
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sum of two hub delay coefficients is larger than the coefficient of scheduled flight time 

(both in absolute values). 

Although hub arrival delay is statistically significant, it is relatively unimportant, 

comparing to other causal factors. The elasticities of route demand with respect to hub 

delay are much smaller in absolute values than elasticities with respect to other variables. 

For example, the median elasticity with respect to hub delay of previous quarter is only 

-0.056, according to the elasticities from the NL3B-IV estimates. Potential travelers will 

not significantly benefit from delay improvements, unless the delay reductions are large. 

According to our estimates, while positive hub delay reduces connecting route 

attractiveness, negative delay has no effect. Moreover, even when potential travelers have 

the chance of choosing O-D airports in MASs, on-time performance of these airports 

does not notably affect their decisions, all else equal. 

Income 

The NL3B-IV estimates indicate air travel demand is strongly sensitive to income. 

The quantiles of income elasticities from the NL3B-IV estimates—1.14 (1st quantile), 

1.21 (median), and 1.29 (3rd quantile)—have a similar central tendency but less 

dispersion compared to those of Gillen et al (2002)—0.81(lst quantile), 1.14 (median), 

and 2.05 (3rd quantile). Particularly, almost all (more than 97% of markets; more than 

99% of passengers) income elasticities from the NL3B-IV estimates are greater than 1, 

implying that air demand is income elastic in most markets. In addition, income 

elasticities have smaller variation across markets than fare and distance elasticities do. 
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Market Distance 

On average, there is a concave relationship between market distance and air route 

demand, controlling for other service variables. According to the NL3B-IV estimates, in 

short- to medium-haul markets, the distance effects reflect declining competition from 

competing modes, which causes air demand to increase with distance; in long-haul 

markets, the effect is reversed, presumably due to decreasing propensity to travel. 

Moreover, the estimated ratios of scale parameters from the NL3B-IV estimates imply 

that in a longer-haul market route attribute changes are more likely to shift traffic 

between routes as opposed to affecting total air market traffic. 

Market distance effects for individual markets may vary since the NL3B model 

allows markets with different service levels to have different distance effects. Market 

demand elasticities with respect to market distance help understand the distance effects of 

individual markets. While the majority of the distance elasticities from the NL3B-IV 

estimates are positive, about 8% of markets (18% in terms of passenger traffic) have 

negative demand elasticities with respect to market distance. This can be explained by the 

concave relationship between market distance and total air demand. 

Three main generalizations emerge from the analysis of distance elasticities. First, 

for markets with distance less than 1200 miles, the longer distance market is expected to 

have higher air demand, all else equal. Second, for markets with distance longer than 

1200 miles, the percentage of markets (or passengers) with negative distance elasticities 

increases with market distance. This indicates that declining propensity to travel has a 

stronger impact of air traffic in longer-haul markets. Third, considering markets with 
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distance longer than 1200 miles, negative distance elasticities are more likely to be found 

in higher traffic markets, which are usually better served and thus have larger inclusive 

values. All else being equal, the influence of declining propensity to travel is more 

pronounced in better served markets, while that of mode competition is stronger in minor 

markets. 

Structural Changes over Time 

Whereas no specific time trends for scheduled flight time and market distance 

effects are found, structural changes related to delay and income are apparent. Even 

though negative delay impacts on route demand are confirmed by the whole panel data, 

only one-third of the estimated delay coefficients from the annual data have the expected 

sign and significant different from zero. This indicates that delay effects are mainly 

observed in a multi-year data set containing greater variation in delay. 

The annual estimates give lower income coefficients and elasticities than those 

from the panel estimates. This suggests that time-series variation of income has a larger 

impact on air demand than cross-sectional variation of income does. The annual income 

coefficients indicate that markets with higher income levels do generate more air trips for 

most time periods, but the income effect becomes negligible in year 2001 and 2002. The 

September 11, 2001 attacks could be a reason for the temporarily weakened income 

effect, perhaps because it weakened demand for discretionary travel affordable to the 

more affluent. 

The preferred NL3B-IV estimates show that fare sensitivity has increased relative 

to frequency sensitivity starting in 2001. The changes of fare elasticities calculated from 
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NL3B-IV estimates show a similar pattern to the changes in coefficient ratios of fare to 

frequency. These changes are thus driven largely by increases in fare sensitivity. 

Although frequency elasticities calculated from NL3B-IV estimates are relatively stable 

over time, an upward trend of the demand elasticities with respect to frequency of direct 

routes can be observed. This suggests that potential travelers became more and more 

sensitive to frequency of direct routes over the study period. 

5.2 Recommendations 

This research proposed a very general passenger demand model for air 

transportation, which is presented in chapter 2. Nonetheless, to ensure tractability and due 

to data constraints, assumptions and simplifications were made but may be relaxed in 

future work. Potential improvements, including model forms, choice sets, data type, trip 

stratifications, O-D airport-specific characteristics, and applications, are summarized as 

follows. 

Model Forms 

In the empirical study, this research assumes that the saturated demand depends on 

city-pair population. Although this approach yields satisfactory results, studies with 

different purposes may need other approaches to calculate saturated demand. For 

example, when the "large enough" proportionality factor is hard to decide for some 

applications, or researchers are interested in the proportionality factor, other approaches 
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are needed. As discussed in chapter 2, one solution is to estimate a model for saturated 

demand, although this increases the complexity of the model. 

This research chooses the aggregate nested logit model for the market share 

function in the empirical study, because (1) the empirical objective of this research 

focuses on the coefficients and ratios of coefficients, and the nested logit model can serve 

this purpose well, and (2) the nested logit model provides a good balance between 

flexibility and computational complexity. Nevertheless, to recognize heterogeneity 

among potential travelers and allow more flexible substitution patterns, the mixed logit 

model may be considered, if the price of computational complexity is affordable. Refer to 

section 2.2.3 for details of the mixed logit model and relevant literature. 

Choice Sets 

While possible transportation alternatives between two cities are included in the 

choice set, the proposed model does not explicitly consider the cases that potential 

travelers may choose other destination cities. This can be justified by two arguments. 

First, the "outside good" alternative implicitly and partly captures these cases. Second, 

"in air transportation there is little destination competition," as described in Kanafani 

(1983, p. 256). However, since characteristics of other cities are not specified in the 

model, a characteristic change of a third city will not affect the demand between two 

cities. In some applications, this may be problematic. For example, studies focusing on 

vacation trips may need to capture the destination competition, since potential travelers 

are not forced to go to a specific city for their vacations. Therefore, destination 

competition should be kept in mind when we apply the proposed model. Adding 
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characteristics of other cities as explanatory variables and/or including destination 

alternatives in the choice set can be solutions for this problem. 

Another issue related to choice sets is that for simplicity, the proposed model does 

not differentiate routes by carries. The model can be extended to the route-carrier level 

when needed, although new nesting structures have to be examined, in order to model the 

correlations among alternatives. 

Data Type 

This research chooses aggregate (at route level) data to estimate the model, because 

the data is publicly available and collected on a regular basis. In some cases, disaggregate 

data, which perhaps provides information closer to travelers' behavior, may be available. 

For example, individual fare information is available for the domestic markets of the 

United States. However, the proposed model and estimation method need to be modified 

to use disaggregate data. 

Trip Stratifications 

This research does not estimate different models for different categories of air trips 

(for example, differentiating models by trip purposes). Since stratifying trips may better 

explain travel behavior, it is worth estimating the proposed model by trip type—if 

information is available. 

O-D Airport-Specific Characteristics 

In the empirical study, the origin and destination airport-specific characteristics, 

which reflect attractiveness of airports in multiple airport systems, are mainly captured by 
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airport dummy variables. The estimated panel model assumes that the airport effects are 

fixed over time, which may not be appropriate if airport characteristics significantly 

change. Adding airport dummy variables for specific time periods may be able to solve 

the problem. Another way is to explicitly specify airport-specific variables to capture 

these effects. Although delay variables of O-D airports have been tried in this research, 

they are not statistically significant. Other variables, particularly airport accessibility 

variables, will improve our understanding of airport choice in multi-airport systems. 

Applications of the Model 

In addition to those applications shown in chapter 4, the proposed model can be 

used to answer other interesting questions, such as (1) What are the specific effects of 

Internet ticket distribution and low cost carrier growth on the structure of air demand? (2) 

How does traveler welfare change under different charge schemes or delay reductions? (3) 

Does the airport fixed effects change after a specific event? 

As discussed in section 4.3, the sensitivity changes of fare and frequency may be 

owing to the effects of the Internet and low cost carriers. However, this research does not 

measure these effects directly due to data inavailability. When information on internet 

usage (e.g. online ticket purchases over time) is available, it will be interesting to explore 

these effects. 

Although our policy experiments focused on the changes in traffic, they can be 

extended to calculate traveler welfare changes under different charge schemes or delay 

reductions. 
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Except for on-time performance metrics, this research assumes airport (as an origin, 

destination, or connecting airport) effects are fixed over time in the panel model. It will 

be interesting to further investigate these effects and trace their changes over time. For 

example, a ground access improvement project, such as extending Bay Area Rapid 

Transit (BART) service to San Francisco International Airport, may significantly change 

the fixed effect of an airport. Quantifying these effects helps evaluate the project. The 

proposed model is suitable for this kind of analysis. 
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Appendix A The Saturated Demand 

Starting with basic equations and notations, this appendix shows the impacts of the 

saturated demand settings on model estimations. Details are as follows. 

0. Basic equations and notations 

• The potential total traffic of a market at time t (Tm(r)l) is assumed to be equal to the 

product of a proportionality factor ( a ) and an observable socioeconomic variable of 

the market (Mm(r)t). This research chooses population as the socioeconomic variable. 

These relationships can be described as Equation (3.6). 

T
m(r), = a * Mm(r)t = « * Population m{r), (3.6) 

• Recall that the dependent variable used in estimations is the difference between natural 

logarithms of market shares of two alternatives (r and r '), which is described as 

Equation (3.7). 

ln(MS„) - \n(MSr,t) = fuPk(xrtk - xr,tk) + (£, - £,,) (3.7) 

• Other notations: 

Qrt is the real traffic of route r at time t in market m; 

y , QJt represents the real total traffic of all air routes in market m ; 

MSat is the marginal market share of the air routes at time /; 

MS0l is the market share of the non-air alternative at time t; 
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1. Both r and r' are not the non-air alternative 

When both r and r' are not the non-air alternative, the dependent variable is 

irrelevant to the saturated demand settings (a and Mm(r)l), for all MNL and NL models, 

as shown in Equation (A.l). 

\n{MSrl) - WMSr,,) = H—%—) ~ ln( Q» ) 
<*-Mm(r), cc-Mm{r)t 

0 
= ln(-^) 

2, r' (or r) is the non-air alternative 

When r' is the non-air alternative, the dependent variables for MNL and NL 

models can be expressed as Equation (A.2) and (A.3), respectively. 

Qn 
ZQJ, 

\n(MSrl) - ln(MS0,) = l n ( — ^ ) - ln(l - J^m(r>" ) 
a-Mm(r), a-Mm(r)t ( A 2 ) 

l n ( - ^ M - f n ( a ) 

JI 

\n(MSat) - ln(AC0,) - ln(JeK(mlr)t) ) - ln(l - JeR(m(r),) ) 
a • Mm(r)t a • Mm(r)t 

*\n(JeR(m(r),) ) - ln (a ) 

(A.3) 

Since air travel costs are high, the real number of air trips is much less than the 

potential demand, i.e., ^QJI «(a 'Mm(r)t). Therefore, the natural logarithm of the 
jeR(m(r)t) 

market share of the non-air alternative is close to zero. The dependent variable can be 
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approximated by the second line of each equation, if the potential demand is set much 

greater than the real total traffic. As shown in these approximated equations, different 

proportionality factor ( a ) settings are equivalent to adding different constant terms to the 

dependent variables. Thus, the proportionality factor settings may only affect the 

estimated intercept of the market share model if the proportionality factor is set large 

enough. In addition, although population is not explicitly specified in the market share 

function, it still helps to explain—through its impact on the calculation of market 

shares—the market share variation between air routes and the non-air alternative, both 

across markets and over time 

Equations similar to (A.2) and (A.3) can be derived for the case that r is the 

non-air alternative. 

169 



www.manaraa.com

Appendix B Derivation of Estimation Equations 

Two-level nested logit (NL2) 

Following notations and the nesting structure of Equation (3.1) and (3.2), and 

Figure 3.2, the market share of route r at time t can be expressed as Equation (B.l). 

MSrl = 

= 

= 

MSrlW-MSat 

e(Zpl+Y„)/Aa 

-y^Z. + Yj,)!^ j 

j<ER(m(r)t)-MP(j) 

( L e t A , , =e'« •• 

e(zpl+Yr,vxa ewm,am _ 

Dal \ + ew">u> 

gW„,+ 

+ e(W» 

K'a,V 

MJa, 

z> 
jeR(m(r)l)\. 

at 

• • ^ 

gUpW-a .&WmIK 

•m 

(K 

K 

ML 

^ h < 

lePU) 

•VK 
) (B.l) 

If the top level scale parameter is normalized to 1 (Am = 1), the difference between 

natural logarithms of market shares of the route r and the outside good (non-air) 

alternative, both at time t, can be derived as Equation (B.2). 

ln(M^)-ln(MS0 ,) 
(Zpl+Yn)/Aa WmIXm 1 

= Wml+(Zpt+Yr!)/Xa-(\-Xa).\n(Da!) 

= Wmt + (Zpl + Yrl)IXa -(1 -Xa)• [(Zpt + Yrl)/Xa-\n{MSrAat)] 

= Wm!+Zpl+Yrl+(l-\)-\n(MSrt]al) 

(B.2) 
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Three-level nested logit-B (NL3B) 

Referring to Equation (3.4) and Figure 3.4 for notations and the nesting structure, 

the market share of route r at time t can be expressed as Equation (B.3). 

MSrl =MSA -MS ,, • MSat 
rt rt\pt pt\at at 

e
r«'*p 

£eV
A' 

jeR(p(r)t) 

(LetDpt--

erM, / ^ 

D
PI 

Y. 

e 

(Zp,+Xpl' pl)i' Xa 

ST e(Zi<+lp>uVh 

leP(m(r)t) 

= e',= jy,". 
jeR(p(r)t) 

' U pi e 

e(w„,+V.,)/A„ 

\ + e(
WM+K<a,)^m 

• n = e'°' = 
h 

at 

,/xp _ezp,aa _ewmlum 

2>(Z" 
;P(m(r)t) 

+XpIh <VK 

^ M V - O )(£>'-( V*»))(i + ewmixm _ Dxaixm v 

Note that: 

A. 
ln(Dp,) = -^-ln(MS r ,b r) 

= [ Z p , + ^ - l n ( ^ ) ] / 2 f l - l n ( M ^ r ) 

= [Zpl + Yrl - Xp • \n(MSrt]pl )]/Aa- \n(MSpt{al) 

A„ A„ A„ 
. + -rL--JL.\n(MSrllpt)-HMSpllat) 

a a 

(B.3) 

Normalizing the top level scale parameter to 1 (Xm =1), the difference between 

natural logarithms of market shares of the route r and the outside good (non-air) 

alternative, both at time /, can be derived as Equation (B.4). 
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\n(MSr,)-\n(MSJ 

ln[ 
e
Y«lxr ,e

2nlx« , / * " , 

DK,xm) 

] - ln[ 
(1 + e WmIXm 

= Wml+^ + j±-(\-^)-MDpl)-(\-Aa)-ln(Dal) 
^"a ^p a 

mt • • ^ - ( l - ^ ) - [ ^ - l n ( M S r t | / W ) ] 0L+-A+* r t 

• (1 - Afl) • [ ^ + ̂  - i • ln(MSrtjp/) - ln(M^ |fl,)] 
A„ A„ A„ 

a a 

rt\pl. 

1 1 = Wmt+{±--~ + \)-Zpt+{±-±- + f--f- + \)-Yr, 
A A A A A A 

+ (i - i . + i . _ ^ ) . i„(MS ) + (1 - A J • ln(M> p,ia,) 

= Pfm/ + Z„ + Yrl + (1 - Xp) • ln (M^„) + (1 - Aa) • \n(MSptlal) 

= Z / W + 0 - ^) • ̂ W^,) + 0 - K) • HMSptla,) + £, 

D • i , , / - ^ 


